310 likes | 396 Views
INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes. Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.1.ppt. Course IV Outline.
E N D
INPE Advanced Course on Compact ObjectsCourse IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.1.ppt
Course IV Outline 1. Basic Elements of X-ray Binary Systems 2. Different States of Black-Hole Binaries 3. Weakly Magnetized Neutron-Star Binaries (Atolls and Z sources) 4. Periodic Variability: Orbits and Pulsars 5. Aperiodic Variability: Bursts, Flares & Instability Cycles
IV.1 Basic Elements of X-ray Binary Systems • Introduction • X-ray Astronomy: window to hot and violent universe • Endpoints of Stellar Evolution • Science Goals for Observations of X-ray Binaries • Properties of Neutron Stars and Black Holes • Physical Properties • Mass Determinations • Surveys of Different Types of Compact Objects • Fundamentals of Accretion Physics • The Accretion Disk • Relativistic Disk Models for Black Holes • Non-thermal Radiation Processes • Questions for General Relativity
X-ray Photons Wien’s Displacement Law (1893) (wavelength (l) of max. energy flux in I(n)) --- 2 keVis hot ! T = 5 x 107 oK / lmax(Angstroms) Wilhelm Carl Werner Otto Fritz Franz Wien • X-rays: Photons 0.6-12 Angstroms Energies 20-1 keV • Thermal Equivalent kT = 4 to 80 million oK • Heating mechanisms non-thermal processes synchrotron radiation (high energy e- in B field) inverse Compton (photon upscatter by high energy e-)
Window for Astrophysics from Space Photon transmission through the Galaxy • X-rays: recover long-distance view at E > 1 keV
X-ray Telescopes in Space Chandra (NASA Great Observatory) • Mirrors (grazing incidence) + gratings? • vs. Collimators (metal baffles) + • Coded Masks (slit plate + shadows) • Spectrometers: Semiconductors (Si); • gas (Xe); CdZnTe pixels for hard-X Rossi X-ray Timing Explorer (NASA) XMM-Newton (European Space Agency
Collapsed Remnants of Old Stars Initial Star Compact Object Support? Observed? < 8 Mowhite dwarf degenerate isolated ; binaries; (0.4-1.3 Mo ; Earth-size) gas pressure cataclysmic variables 8-25 Moneutron star strong nuclear force radio pulsars ; hot- (1.4-2.0 Mo ; R~10 km) isolated; X-ray pulsars; X-ray bursters > 25 Moblack hole no classical forces accreting binaries (3-16 Mo ; event horizon) quantum gravity? (X-ray sources) Milky Way Today: 108-109 BHs ; ~109 NSs ; > 1010 WDs (Timmes, Woosley & Weaver 1996; Adams and Laughlin 1996)
Collapsed Remnants of Old Stars Compact Object <Mo> ; <Rcm> GMmR-1 / mc2 Boundary white dwarf 0.6 ; 6x108 10-4 crash neutron star 1.4 ; 106 0.2 crash black hole 10 ; 3x106 0.5 event horizon
Binary Evolution for Accreting Compact Objects • Scenario 1: Roche Lobe overflow • More massive star dies first • Binary separation can shrink • (magnetic braking and/or grav. radiation) • Companion may evolve and grow • Common for Low-Mass (Companion) • X-ray Binaries (LMXB) • Scenario 2: Stellar Wind Accretion • More massive star dies first • Stellar wind captured (with possible inner accretion disk) • Common for High-Mass (Companion) • X-ray Binaries (HMXB)
Measuring Masses of Compact Objects Dynamical study: compact objectx and companion starc (for binary period, P, and inclination angle, i ) Kepler’s 3rd Law: 4 p2 (ax + ac)3 = GP2 (Mx + Mc) center of mass: Mxax = Mc ac radial velocity amplitude Kc= 2 pac sin iP-1 “Mass Function”:f(M) = PK3/ 2pG = Mx sin3(i) / (1 + Mc/Mx)2 < Mx Dynamical Black Hole: Mx > 3 Mo(maximum for a neutron star) BH Candidates: no pulsations + no X-ray bursts + properties of BHBs
Compact Object Mass Neutron Star Limit: 3 Mo (dP/dr)0.5 < c Rhoades & Ruffini 1974 Chitre & Hartle 1976 Kalogera & Baym 1996 Black Holes (BH) Mx = 3-18 Mo Neutron Stars (NS) (X-ray & radio pulsars) Mx ~ 1.4 Mo
Transients with Low-Mass Companions: Best Mx Optical images of A0620-00; BH at 0.9 kpc quiescence outburst 1975 P K3 / 2pG = Mx sin3(i) / (1 + Mc/Mx)2
Optical Study of BH Binary in Quiescence A0620-00 (X-ray Nova Mon 1975) f(M) = 2.72 +/- 0.06 Mo P = 0.323014(1) days K4V companion i ~ 60o Mx = 7 +/- 3 Mo
Optical Study of BHB in Quiescence Optical Photometry of Gravity-distorted K4 star Model( i, fstar , Mc/Mx , Tc, klimb, kgrav) [residual disk; star spots] Other techniques: • Rotational broadening of absorption lines • Doppler curve of emission lines (residual disk) …… worse problems
Inventory of Black Hole Binaries BH Binary:Mass from binary analyses BH Candidate: BHB X-ray properties + no pulsations + no X-ray bursts Dynamical BHBsBH Candidates Milky Way 18 25 LMC 2 0 local group 1 (M33) (? many ULXs) --------------------- --------------------- --------------------- total 21 25 + ? Transients 17 23 + ?
Black Holes in the Milky Way 18 BHBs in Milky Way 16 fairly well constrained (Jerry Orosz) Scaled, tilted, and colored for surface temp. of companion star.
Inventory of Neutron-Star X-ray Sources SubtypeTypical CharacteristicsNumberTransients Atoll Sources Low-B; LMXBs; X-ray bursts; like BHBs ~100 ~60 Msec X-ray Pulsars 182-599 Hz ; atoll-like X-spectra 8 8 Z-sources high- Lx LMXBs; unique spectral/timing var. 9 1 HMXB or Pulsars hard spectrum + cutoff ; most are X-pulsars ~90 ~50 Magnetars Soft Gama Repeaters (4 + 1 cand.) 14 7 Anomalous X-ray Pul;sars (8 + 1 cand.) Other Isolated Pulsars young SNRs; X-detect radio pulsars 70? 0? ---------- --------- Total 291 126 Cataloged radio pulsars number approaching 2000?
X-ray Transients in the Milky Way • RXTE ASM: • 47 Persistent Sources> 20 mCrab (1.5 ASM c/s) • 80 Galactic Transients • (1996-2007; some recurrent) • Transients: timeline of science opportunities.
Science Goals for Observing X-ray Binaries • Locate stellar black holes and neutron stars100% of BHs from X-ray sources ; special applications for X-selected NSs • Measure Physical Properties of Compact Objects Mass (Mx) Spin NS: pulsations BH: infer a* = cJ / GMx2 BH event horizon compare NS accretion (hard surface) vs. BH (none?) NS surface B field (<108 to >1015 G) NS Interior (Eq. of state; burst models ; oscillation modes) • Understand Accretion Physics origin of different X-ray states ; accretion disk and Rin ; transient jets ; hard X-rays (hot Comptonizing corona) ; quasi-periodic oscillations primary variables: Mx , dM/dt , spin; other variables: i, qspin, surface B (NS), global B, plasma b ?
Accretion Disks and the Inner Disk Boundary Keplerian Orbits for sample m E(r)= U+K = 0.5 U(r) = -0.5 G Mx m r -1 Particle dE/dr = 0.5 G Mx mr -2 = dL(r) ~ d (dE/dr) = 0.5 e G Mx mr -2 dt dL(r) ~2pr dr sT4 T(r) ~ r -3/4 • Real physical model: • conserve angular momentum (viscosity); outflow?, rad. efficiency (e) • 3-D geometry (disk thickness, hydrostatic eq., radiative transfer) • B-fields and instabilities • GR effects (Innermost Stable Circular Orbit, grav. redshift, beaming)
Toward a Complete Model of Accretion Disks • Shakura & Sunyaev a-disk (1973) • viscosity scales with total pressure • shear stress: trf = a P (P = Pgas + Prad) • thin disk: h << R • high radiative efficiency (local L release) • Makishima et al. 1986: apply to obs. • T(r) ~ r -3/4 ; L = 4p Rin2s T4 problem : no independent measure of mass accretion rate • MRI: Magneto-Rotational Instability (Balbus &Hawley 1991) • MHD simulations: plasma eddies with local B, are sheared in a rotating disk; • this process transports angular momentum outward. • Continued MHD accretion simulations in General Relativity • (e.g. Hawley & Balbus 2002; DeVilliers, Hawley, & Krolik 2003; McKinney & Gammie 2004) • no dissipation (radiation) included in GR MHD simulations, thus far
Inner Disk Boundary for Accretion Disks • Black Holes: Innermost Stable Circular Orbit (ISCO) BH spin a*: 0.0 0.5 0.75 0.9 0.98 1.0 ----------------------------------------------------- ISCO (Rg / GMx/c2): 6.0 4.2 3.2 2.3 1.6 1.0 • Neutron Stars Surface (and ? RNS < RISCO ?) Boundary Layer (2nd heat source) Magnetic Field Affects (Alfven Radius; control of inner accretion flow ; accretion focus at polar cap pulsars)
GR Applications for Thermal State Emissivity vs. Radius in the Accretion Disk Shakura & Sunyaev 1973; Makishima et al. 1986; Page & Thorne 1974; Zhang, Cui, & Chen 1997 Gierlinski et al. 2001; Li et al. 2005
GR Applications for Thermal State Relativistic Accretion Disk: Spectral Models • e.g. kerrbb in xspec • Li et al. 2005; Davis et al. 2005 • Integrate over disk and Bn(T) • Correct for GR effects • (grav-z, Doppler, grav-focusing) • Correct for radiative transfer
Tools for X-ray Data Analysis MethodApplicationComments Images impulsive BJB jets two cases (Chandra) Spectrum Model Continuum accretion disk BH: infer a* if known Mx ; d Model Hard X-rays hot corona / Comptonization two types: (1) jet ; (2) ??? Spectral Lines BH: broad Fe K-a (6.4 keV) corona fluoresces inner disk emission profile Mx ; a* ‘’ high-ioniz. absorption lines seen in a few BHs variable, magnetized disk? ‘’ redshifted absorption line 1 NS?: surface grav. redshift
Tools for X-ray Data Analysis MethodApplicationComments Timing Period Search NS: X-ray Pulsars several types; measure dP/dt and pulse-profiles(E) ‘’ NS or BH binary orbits wind-caused for HMXB some LMXB eclipsers, dippers ‘’ Long-term Periods precessing disks ; ? slow waves in dM/dt ? Quasi-Period Oscillations BH and NS rich in detail low n (0.1-50 Hz) common in some states high n (50-1300 Hz) NS: var. n ; BH steady harmonics very slow (10-6 to 10-2 Hz) some BH: disk instability cycles
Tools for X-ray Data Analysis MethodApplicationComments Timing Aperiodic Phenoma ‘’ Type I X-ray Bursts in NS thermonucl. explosions on surface ID as NS ; oscillations spin ; infer distance ; physical models improving ‘’ Type II X-ray Bursts two NS cases ; cause ?? ‘’ Superbursts (many hours) C detonation in subsurface ? Probe NS interiors ‘’ Giant flares in Magnetars ? crust shifts + B reconnection Progress?: coordinated timing / spectral analyses
Defining X-ray States in BHB? • ThermalState: • inner accretion disk X-ray states Lecture IV.2
Searches for the Event Horizon Game: model infall to hard surface (NS) vs. none (BH) TopicBlack HoleNeutron StarModel Quiescent X-ray State Measure Lx (erg s-1) 1031 few 1032 advection Thermonuclear Bursts Measure rate (at 0.1 LEdd) none 5x10-5 burst model Thermal X-ray State X-ray Spectrum max. fdisk > 90% 80% boundary layer (Narayan 2004 ; Narayan & Heyl 2002; Remillard et al. 2006; Done & Gierlinski 2003)
References: Reviews “Compact Stellar X-ray Sources”, eds. Lewin & van der Klis (2006) ; 16 chapters; some on ‘astro-ph’ preprint server: http://xxx.lanl.gov/form Overview of Discovery Psaltis astro-ph/0410536 Rapid X-ray Variability van der Klis astro-ph/0410551 X-ray Bursts Strohmayer & Bildsten astro-ph/0301544 Black Hole Binaries McClintock & Remillard astro-ph/0306213 Optical Observations Charles & Coe astro-ph/0308020 Fast Transients, Flashes Heise & in ‘t Zand --- Isolated Neutron Stars Kaspi, Roberts, & Harding astro-ph/0402136 Jets Fender astro-ph/0303339 Accretion Theory King astro-ph/0301118 Magnetars Wood & Thompson astro-ph/0406133
References: Reviews Other Reviews: Remillard & McClintock 2006, "X-Ray Properties of Black-Hole Binaries", ARAA, 44, 49 Done. Gierlinski, & Kubota 2007, “Modelling the behaviour of accretion flows in X-ray binaries”, A&A Reviews, in press, astro-ph/07080148 X-ray Binary Catalogs: (HMXB) Liu, van Paradijs, & van den Heuvel 2006, A&A, 455, 1165 (LMXB) Liu, van Paradijs, & van den Heuvel 2007, A&A, 469, 807