slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Applications of the SMART project to structural monitoring in military aeronautics PowerPoint Presentation
Download Presentation
Applications of the SMART project to structural monitoring in military aeronautics

Loading in 2 Seconds...

play fullscreen
1 / 1

Applications of the SMART project to structural monitoring in military aeronautics - PowerPoint PPT Presentation


  • 196 Views
  • Uploaded on

STRUCTURAL HEALTH MONITORING. PROCESS MONITORING. CURE MONITORING, GLASS TRANSITION TEMPERATURE DETECTION, RELAXATION MONITORING. PHASE TRANSITION IDENTIFICATION. FBG. MULTIFUNCTION SENSING SYSTEM. STATIC STRAIN MAPPING, TEMPERATURE DISTRIBUTION, DYNAMIC STRAIN MEASUREMENTS.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Applications of the SMART project to structural monitoring in military aeronautics' - susan-dejesus


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

STRUCTURAL HEALTH MONITORING

PROCESS MONITORING

CURE MONITORING, GLASS TRANSITION TEMPERATURE DETECTION, RELAXATION MONITORING. PHASE TRANSITION IDENTIFICATION

FBG

MULTIFUNCTION SENSING SYSTEM

STATIC STRAIN MAPPING, TEMPERATURE DISTRIBUTION,

DYNAMIC STRAIN MEASUREMENTS

Piezoelectric Patch

Crack detection

Damage identification

High quality

Advanced materials

Cost reduction

Smart Processing

Safety Improvement

Maintenance costreduction

FBG

Accelerometer

N°4 FBGs Embedded within Spar, Parallel to Wing’s Axis

29 Excitation Points for Experimental Measures

N°4 Uni – Axial Accelerometers Bonded to Wing’s Surface

FBG Output

Accelerometer

Simulation

Applications of the SMART project to structural monitoring in military aeronautics

SUMMARY

  • In the last years, Fiber Bragg grating (FBG) based devices have been widely exploited in applications ranging from sensing to telecommunications. Based on this technology, with unrivaled performances compared with other optoelectronic devices, a strong cooperation between different institutions has lead to a number of novel configurations which noticeably increased the performance and miniaturization of systems. This innovation has generated a number of applications in the following fields: structural health monitoring, aerospace, aeronautic, railway, electrical plants, ultrasonic diagnostics, high speed optical communications, GHz e.m. beam forming, microwave photonics. This is evident in light of several industrial research projects in cooperation with Italian Aerospace Research Center (CIRA), Alenia and Circumvesuviana and in the creation of a Spin Off company involved in smart applications. In particular, the SMART project, just arrived at the end of the second year, is finalized to integrate advanced materials, sensing and actuator systems in order to develop smart components able to:
    • perform auto diagnosis on the health state during the operative life
    • change their structural features such as stiffness, shape and so on.
  • The critical points in the development of a true structural health monitoring in practical applications are related to the development of resident sensing systems able to retrieve all the required information in order to recovery the health state of the structure and its dependence on the working conditions.
  • To this aim, a great effort has been spent to develop innovative interrogation techniques of fiber optic sensors based on grating technology, enabling a full integration of the entire measurement apparatus in such a way that the stuff mounted outside the fiber and capable to simultaneously interrogate many gratings on the same fiber can be made smaller than a few cubic inches. In addition, our system is able to fully exploit the dynamic response of the grating in such a way it is able to measure mechanical vibrations and acoustic fields with frequencies higher than 1 MHz. This capability is instrumental in acoustic emission detection and ultrasonic investigations aimed to localize and identify damages within the structure. This ability can be exploited in many fields especially in the case of military aircrafts where over limit performances pose severe problems in structural health monitoring.
  • Many prototypes have been exploited in industrial applications in industrial sectors such as civil, aeronautic and aerospace. The same technology will be implemented for in flight tests within the European Project Ahmos 2, with the objective to monitor the structural state of the aircraft.
  • In addition, the integration with actuating systems would enable the possibility to change the structural properties of the components through the modulation of the mechanical and the geometrical properties.
  • In passing we note that our sensors systems can be easily mounted on the same optical fiber normally used for data transmission. In aeronautic applications, this last property can results in the use of the same optical fiber circuits for structure monitoring and fly by light simultaneously.

Modal Analysis Tests on a

Composite Aircraft Model Wing

Vibration Control for

Aeronautic Structures

Co-Collocated Sensor-Actuator Syatem

  • Vpp

Optic Fiber 1

lB1

Coating

PZT

Sensor-Actuator System for Vibration Control

PTZ

  • Coating

Straingages

lB2

SMART AND MULTIFUNCTION SENSORS

Optic Fiber 2

Aluminium

Cushion

Adaptive close loop Control Approach

Damage Detection Tests

Fiber Bragg Gratings

  • One dimensional grating in a fiber
    • Reflect light in fiber
    • Change modes in fiber
  • n index variation in fiber core
  • Strength of grating is proportional to refractive index modulation depth

Different fields of Application

Railway track monitoring

Ultrasound Wave Detection in Fluids

Bragg = 2n 

Packaged FBG for Enhanced Performances

patent filed with Alenia WASS

Optical Fiber with FBG along the railway

Embedded Sensors in Composite Materials

Experimental Results

Time Excitation Signal (Piezoelectric Element)

FBG response

Multipoint Monitoring system into the Railway Control Cabin