1 / 9

§2.2 函数的和、差、积、商的求导法则

§2.2 函数的和、差、积、商的求导法则. 一、求导法则. 二、求导举例. 三、求导公式小结. 首页. 上页. 返回. 下页. 结束. . 一、函数的和、差、积、商的求导法则. 两个可导函数之和 ( 差 ) 的导数等这两个函数的导数的和 ( 差 ) : [ u ( x )  v ( x )]  = u  ( x )  v  ( x ) 。 >>>. 两个可导函数乘积的导数等于前一因子的导数乘以后一因子,加上后一因子的导数乘以前一因子:

Download Presentation

§2.2 函数的和、差、积、商的求导法则

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §2.2 函数的和、差、积、商的求导法则 一、求导法则 二、求导举例 三、求导公式小结 首页 上页 返回 下页 结束 

  2. 一、函数的和、差、积、商的求导法则 两个可导函数之和(差)的导数等这两个函数的导数的和(差): [u(x)v(x)]=u(x)v(x) 。>>> 两个可导函数乘积的导数等于前一因子的导数乘以后一因子,加上后一因子的导数乘以前一因子: [u(x)v(x)]=u(x)v(x)+u(x)v(x)。>>> 两个可导函数之商的导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方: 下页

  3. 函数的和、差、积、商的求导法则: [u(x)v(x)]=u(x)v(x), [u(x)v(x)]=u(x)v(x)+u(x)v(x), 求导法则的推广: (uvw)=uvw, (uvw) =uvw+uvw+uvw。 特殊情况: (Cu)=Cu。 首页

  4. 公式[u(x)+v(x)]=u(x)+v(x)的证明: 设f(x)= u(x)+v(x),则由导数定义有 这表示,函数f(x)在点x处也可导,且 f(x)=u(x)+v(x)。 即 [u(x)+v(x)]=u(x)+v(x)。 返回

  5. 公式 [u(x)v(x)]=u(x)v(x)+u(x)v(x)的证明: [u(x)v(x)] =u(x)v(x)+u(x)v(x), 返回

  6. 例2. 二、求导举例 例1.y=2x 3-5x 2+3x-7,求y 解: y=(2x 3-5x 2+3x-7) = (2x 3)-(5x 2)+(3x)-(7) =2(x 3)- 5(x 2)+ 3(x) =2·3x 2-5·2x+3 =6x 2-10x+3。 下页

  7. 例3.y=ex(sin x+cos x),求y。 解: y=(ex)(sin x+cos x) + ex(sin x+cos x) = ex (sin x+cos x) + ex (cos x-sin x) =2excos x。 例4.y=tan x,求y。 即 (tan x)=sec2x。 下页

  8. 例5.y=sec x,求y。 即 (sec x)=sec x tan x。 用类似方法,还可求得: (cot x)=-csc2x, (csc x)=-csc x cot x。 首页

  9. 三、求导公式小结 1.(C ) =0, 2.(xm)=mxm-1,其中m为常数, 3.(sin x)=cos x,(cos x )=-sin x , (tan x)=sec2x ,(cot x)=-csc2x, (sec x)=sec x tan x, (csc x)=-csc x cot x, 4. (a x)=ax ln a,特殊地(ex)=ex, 结束

More Related