1 / 30

49 th Moriond - Cosmology March 28 th , 2014

49 th Moriond - Cosmology March 28 th , 2014. The SZE in the SKA & MILLIMETRON Era. Sergio Colafrancesco Wits University - DST/NRF SKA Research Chair Email : Sergio.C olafrancesco@wits.ac.za. T he SZE: Physics. The SZ effect is a specific form of

shyla
Download Presentation

49 th Moriond - Cosmology March 28 th , 2014

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 49thMoriond - CosmologyMarch 28th, 2014 The SZE in the SKA & MILLIMETRON Era Sergio Colafrancesco Wits University- DST/NRF SKA Research Chair Email: Sergio.Colafrancesco@wits.ac.za

  2. The SZE: Physics The SZ effectis a specificform of Radiation-Matterinteraction Photonfields External ↓ ↓ CMB 21-cm high-energy photon Use CMB photons to extract plasma information ↑ • Internal • High-E electrons • thermal (supra-thermal) • relativistic

  3. The SZE:manifestations SZE Intensity SZth SZwarm SZkin SZrel SZDM depends on fe(p) and ICMB scalar SZE polarization 5 keV depends on fe(p) and ICMBvectorial 20 keV

  4. SZE: multi-nAstro Physics Independent of astrophysics Stronglydependent on astrophysics Insensitive to CMB Sensitive to CMB Accessible from Space • Need: • wide-n coverage • (≈10 - 800 GHz) • sensitivity • (< mK) • Imaging (arcsec) kT= 7 keV kT=10 keV kT=15 keV kT=20 keV OVRO SPT MUSTANG

  5. Exploiting SZE information Different spectroscopic configurations for studying the SZE in cosmic structures Foreground SZ kin SZ non-th SZ th [DeBernardis, Colafrancesco et al. 2012]

  6. Exploiting SZE information Different spectroscopic configurations for studying the SZE in cosmic structures EC2 3m passive OLIMPO EC3 12m passive PLANCK PLANCK EC5 12m active SPT Herschel Millimetron [DeBernardis, Colafrancesco et al. 2012]

  7. SZE: parameterextraction 1 hour Millimetron cold DFTS, coldtelescope(4K) on a satellite in L2 (de Bernardis, S.C. et al. 2012)

  8. SZE: parameterextraction 3 hours OLIMPO: warm DFTS, warmtelescope on a balloon (de Bernardis, S.C. et al. 2012)

  9. SZE: best frequency bands 100-1000 GHz 5-30 GHz Square Kilometer Array Spektr-M 104 0.1

  10. SZE: frequency & sensitivity Square Kilometer Array Spektr-M VLA E-VLA MerKAT SKA-P1 SKA-P2 10-17 W Hz-1/2 10-18 10-19

  11. SZE: MILLIMETRON (102 - 103 GHz) Millimetronn-range probes the electron plasma physics … and yields related cosmology • Cluster physics characterization • Thermal, non-thermal pressure stratification • Multiple components • Relativistic plasma physics (thermal, non-thermal) • Spectro-polarimetry: 3D tomography • Cosmology • Cluster cosmology (with no physics biases/priors) • Radio-galaxy cosmology “ • Galaxy cosmology “ • SZE Polarization • Measuring CMB polarization • The Cosmological Principle • DM nature

  12. SZE: physics characterization MACS J07017.5+3745 A Triple-Merger Cluster ? Bullet cluster A multi-plasma stratification ? [Mroczkowski et al. 2011] Radio + X-rays Radio + Temperature Radio + Lensing

  13. SZE: Bullettomography Morphological SZE T standard deviation First measurement of the Temperature standard deviationin galaxyclusters usingthe SZE [Prokhorov & Colafrancesco 2012] 345 GHz Laboca 600 GHz Herschel Bullet Cluster <T> ~ 13.9 keV • = 10.6 ± 3.8 keV Shock hot • Measure of the temperature • stratification in clusters • Measure of plasma in-homogeneity • (th.+non-th.) alongthe line-of-sight Bullet cold A2219 [Prokhorov, S.C. et al. 2011]

  14. SZE: Bullet Astro Physics Multi - Temperature Thermal + non-thermal kT1= 13.9 keVt=3.5 10-3 kT2= 25 keV, t=5.5 10-3 kT = 13.9 keVt=1.1 10-2 ne~E-2.7, p1=1, t=2.4 10-4 c2=1.27 d.o.f.=1 rms fom=1 c2=0.44 d.o.f.=2 rms fom=0.35 T2 Thermal T1 Non-thermal [S.C. et al. 2011] [S.C. et al. 2011] Evidence of non-gravitationalactivity in the cluster merging Shock acceleration or MHD acceleration Stochastic electron acceleration Continuous hadron acceleration

  15. SZE: resolving cluster atmospheres X-ray Chandra 12 m. 3 m. MS0735 150 GHz 150 GHz R=100 Millimetron 350 GHz 350 GHz

  16. MACS J07017.5+3745 A Triple-Merger Cluster ? B)kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242) C)kT = 34.0 kev (+11/-7.9) V = -3720 km/s (+2960/-2480) V = -733 k/s (+486/-478) D)kT ≈ 4 keV V = 831 km/s (843/-700) A) kT ≈ 2 keV V = 278 km/s (+295/-339)

  17. MACS J07017.5+3745 A Triple-Merger Cluster ? B)kT = 12.8 kev (+2.1/-1.6) V = 3600 km/s (+3440/-2160) V = 3238 km/s (252/-242) C)kT = 34.0 kev (+11/-7.9) V = -3720 km/s (+2960/-2480) V = -733 k/s (+486/-478) D)kT ≈ 4 keV V = 831 km/s (843/-700) A) kT ≈ 2 keV V = 278 km/s (+295/-339) E) Non-thermal component s=3.5, p1=0.1 t=5 10-4 – 2 10-2

  18. MACS J07017.5+3745 Cluster physics and Dynamics at high frequency n > 350 GHz Comp. C [S.C. & Marchegiani 2013] Comp. C Comp. B

  19. SZE spectro-polarimetry 1) Derive the velocity DF of electrons by using SZE observationsat>4 frequencies[Prokhorov, Colafrancesco, et al. 2011] 2) Polarizationdue to finite opticaldepthtallowto measuredensityand velocitydistribution of the electrons Juttner Maxwell-Boltzmann Non-relativistic 5 keV 8 keV 13 keV 20 keV BB spectrum

  20. SZE cluster cosmology SZE spectroscopy will allow to derive spatially resolved T-profiles for nearby clusters out to large radii: SZE sensitivity (10-100 nK) willallow to reach the mass limitatwhich clusters and groups can be found Unbiasedtotal mass reconstruction due to sensitivity to total pressure DI SZE and internalvelocityfieldsDP SZE Inversion Technique SZE → T, t, Vp, TCMB Separate thermal and non-thermal pressure components: T profile uniquely sampled in the outer parts of the cluster Perseus SZE X-Ray [Colafrancesco & Marchegiani 2010]

  21. SZE: Cosmology with clusters CMB QuadrupoleQ2 Measure the CMB anisotropy at positions U1 and U2 by using galaxy cluster SZE Cluster Cosmological Principle CMB Quadrupole Q2 Polarized SZE reflects Q2 S Cluster [Colafrancesco, Tullio & Emritte 2013-14]

  22. SZE: Cosmology with clusters Cluster Π−(th) RG Π−(non-th) 0.05 mJy/arcmin2 Quadrupole Quadrupole 1 mJy/arcmin2 Measure the CMB multipoles at the position of clusters/RGs in the Universe Cluster Π−(th) RG Π−(non-th) Octupole Octupole 0.005 mJy/arcmin2 0.042 mJy/arcmin2 S.C. et al. [2012-14]

  23. SZE: SKA (10-30 GHz) • Cluster cosmology: SZE and SZE-21cm • CMB spectral modifications at early epochs: SZE-21cm • Dark Ages and EoR: SZE 21cm • DM heating: SZE-21cm • Primordial B-field • Fundamental physics • Photon mass and decay • … SKAn-range probes the background radiation fields … and yields related cosmology

  24. SZE cluster cosmology • The SKA can measure • SZE in various objects: • Clusters • Radiogalaxies • Galaxy halos/winds 3C292 3C294 Bullet cls VLA E-VLA MerKAT SKA-P1 SKA-P2

  25. SZE-21cm: DA and EoR SZE-21cm CMB field modified kTe=7 keV 1+z=3 X-ray z=20-6 Collision/abs. z=200-30 Ly-a z=30-20 kTe=7 keV no DM extreme Mmin=10-6 Mo Mmin=10-3 Mo no DM (Colafrancesco & Marchegiani 2014)

  26. SZE: the photon isnot a theoreticalrequirement • Classicalelectrodynamics: Maxwell equations are substituted by Proca (1936) equations for mg ≠ 0 • Quantum theory: QED with Stuckelbergmechanism (1938) allowsa non-zero photon mass withoutviolation of Gaugeinvariance[Goldhaber & Nieto2010] Photon can decay with lifetimetg ≠ 0 Goodlimits on mg: No tight limit on tg:

  27. SZE with g decay CMB spectrum modified by photon decay as function of [Colafrancesco & Marchegiani2014]

  28. SZE with g decay: A2163 SKA can measure, or set the most stringent limits on, the g decay (Colafrancesco & Marchegiani2014, A&A, 562, L2) SKA (30 h) 260 h Differencebetween the SZE withoutgdecay and the SZE with gdecay

  29. Conclusions Millimetron and SKA observations of the SZE have the potential of addressing several key questions for Cosmology and fundamental Astro-Physics • Cosmological parameters and standard cosmological probes • The Nature of Dark Matter (DM) • The proof of the Cosmological Principle (CP) • Origin of Cosmological magnetic field (B) • The Dark Ages and EoR (DA - EoR) • Fundamental properties of the Photon (g) This is possible thanks to the un-precedent • Wide-band spectro-polarimetry • High sensitivity • High spatial resolution • Survey and pointed observation modes

  30. THANKS for your attention

More Related