730 likes | 837 Views
This comprehensive overview discusses advanced techniques in exploring Bayesian networks, focusing on the evaluation and compilation engines used in sophisticated platforms. It covers embedded probabilistic inference, local conditional probability tables (CPTs), arithmetic circuits, and the impact of evidence on probabilistic values. The document also contrasts analytic methods like junction tree versus arithmetic circuit evaluations, detailing the computational efficiencies involved. Ideal for researchers and practitioners in machine learning and artificial intelligence, this resource provides the necessary insights for implementing advanced Bayesian modeling strategies.
E N D
Sophisticated Platform (desktop) evaluator n evaluator 1 evaluator 2 compiler Engine AC AC AC Primitive Platforms (embedded) Embedding Probabilistic Inference
+ * * + + * * * * * * θa λa λb θab θa~b θ~ab λ~b θ~a~b λ~a θ~a
Local CPT Structure A B E S A B E Pr(S|A,B,E) a b e 0.95 a b e 0.95 a b e 0.20 a b e 0.05 a b e 0.00 a b e 0.00 a b e 0.00 a b e 0.00 Tabular CPT qs|abe -Functional constraints -Context-specific independence
Ø A B true true .03 true false .27 false true .56 false false false .14 false Pr(a) = .03 + .27 = .3
A B Ø true true .03 true false .27 false true .56 false false false .14 false Pr(~b) = .27 + .14 = .41
A B Ø λaλb .03 .03 true true .27 λaλ~b .27 true false λ~aλb .56 .56 false true false λ~aλ~b .14 .14 false false false F(λ~a,λ~b,λb,λa) = .03λaλb + .27λaλ~b + .56λ~aλb + .14λ~a λ~b
+ * * * * .14 .56 .27 .03 λ~a λ~b λb λa F(λ~a,λ~b,λb,λa) = .03λaλb + .27λaλ~b + .56λ~aλb + .14λ~a λ~b
.03 + * * * * .14 .56 .27 .03 λ~a λ~b λb λa 0 0 1 1 Evidence: a & b
.27 + * * * * .14 .56 .27 .03 λ~a λ~b λ b λa 0 1 0 1 Evidence: a & ~b
.30 + * * * * .14 .56 .27 .03 λ~a λ~b λ b λa 0 1 1 1 Evidence: a
1 + * * * * .14 .56 .27 .03 λ~a λ~b λ b λa 1 1 1 1 Evidence: true
B D A θc|a C θa θd|bc θb|a F = λa λb λc λd θa θb|a θc|a θd|bc + λa λb λc λ~d θa θb|a θc|a θ~d|bc + …. Each term has 2n variables (n indicators, n parameters) Each variable has degree one (multi-linear function)
C B A F = λa λb λc θa θb|a θc|a + λa λb λ~c θa θb|a θ~c|a + λa λ~b λc θa θ~b|a θc|a + λa λ~b λ~c θa θ~b|a θ~c|a ….
B D A θc|a C θa θd|bc θb|a F = λa λb λc λd θa θb|a θc|a θd|bc + λa λb λc λ~d θa θb|a θc|a θ~d|bc + …. F(b,~c,d) = F(λa=1, λ~a=1, λb=1, λ~b=0, λc=0, λ~c=1, λd=1,λ~d=0) = θa θb|a θ~c|a θd|b~c + θ~a θb|a θ~c|~a θd|b~c = Pr(b,~c,d)
Factoring the Network Polynomialinto an Arithmetic Circuit (AC)
+ * * + + * * * * * * θa λa λb θ~a θab θa~b θ~ab λ~b θ~a~b λ~a Arithmetic Circuits F = λa λb θa θb|a+ λa λ~b θa θ~b|a+ λ~aλb θ~a θb|~a+ λ~a λ~b θ~a θ~b|~a
.3 + .3 0 * * + + 1 1 .3 .1 .9 .8 .2 0 * * * * * * .3 1 .1 1 .9 .8 1 .2 0 .7 θa λa λb θab θa~b θ~ab λ~b θ~a~b λ~a θ~a
1 .3 .3 .03 .3 0 .27 0 .7 0 .3 + 1 1 1 * * .3 0 + + .3 0 1 1 1 .3 .3 1 0 0 * * * * * .3 .1 .9 .8 .2 0 * θa λa λb θab θa~b θ~ab λ~b θ~a~b λ~a θ~a .3 1 .1 1 .9 .8 1 .2 0 .7
ØB A B A ØA true true .1 true .3 true false .9 false .7 false true .8 false false .2 false B A false
1 .3 .3 .03 .3 0 .27 0 .7 0 Pr(a) .3 + * * + + * * * * * * θa λa λb θab θa~b θ~ab λ~b θ~a~b λ~a θ~a .3 1 .1 1 .9 .8 1 .2 0 .7
When X does not appear in e: Pr(x,e) =F(e) / λx Pr(x | e) =F(e) / λx F(e)
If variable X is instantiated in e: Pr(e – X, x́) = F(e)/ λx́
For variable X that appears instantiated in e: Σx F(e) λx Pr(e - X) =
For every family X U in Network N: F(e) / θx|u θx|u F(e ) Pr(x,u|e) =
Second Partial Derivatives F2(e)/ λx λy = Pr(x,y,e)
Bayesian network A Jointree ABC B C D E BCD H F G BH CE EF EG Representational factorization (17 parameters) Computational factorization (32 parameters) Factorizations
Bayesian network A Jointree ABC B C D E BCD H F G BH CE EF EG Representational factorization (17 parameters) Computational factorization (32 parameters) Factorizations Network topology Network parameters
A B E S A B E Pr(S|A,B,E) a b e 0.95 Pr(S=s|A=a,B=b)=.95 a b e 0.95 a b e 0.20 a b e 0.05 a b e 0.00 a b e 0.00 a b e 0.00 a b e 0.00 Tabular CPT Local Structure
Bayesian network A Jointree ABC B C D E BCD H F G BH CE EF EG Representational factorization Computational factorization Factorizations Network topology Network parameters