1 / 61

Experimental Approaches for the Einstein Telescope

Experimental Approaches for the Einstein Telescope. Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing Team Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena Sonderforschungsbereich Transregio 7 „Gravitationswellenastronomie“

salome
Download Presentation

Experimental Approaches for the Einstein Telescope

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimental Approachesforthe Einstein Telescope Ronny Nawrodt on behalf ofthe Einstein Telescope Science Team andthe ET DS Writing Team Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena Sonderforschungsbereich Transregio 7 „Gravitationswellenastronomie“ Rencontres de MoriondandGPhyS ColloquiumLa Thuile 20-27 March 2011

  2. Overview • previoustalk: astro-physicswiththe Einstein Telescope • aim: overviewof experimental partofthe design studyand R&D forthe Einstein Telescope • content: • sensitivitycurveandimplicationsforthesetup • opticallayout • thermal noiseofopticalcomponents • suspensions • siteselectionandinfrastructure Moriond Meeting 2011

  3. Sensitivityaims • initialaim: sensitivityenhancementofabout an orderofmagnitude in all ofthefrequencyrange form 1 Hz to 10 kHz seismic suspension radiationpressure larger mass higherlaser power photonshotnoise larger beam dia. mirror thermal noise Moriond Meeting 2011

  4. Sensitivityaims • Toachivethatgoal all currentlyavailabletechniquesneedstobepushedtothelimitsandevenbeyond large fieldofupcoming R&D • currently: • conceptual design studyphaseongoing (2008 – 2011, FP7) • aim: givea potential design fortheinfrastructurebasedon our currentknowledge, summarisetheastrophysicalcasefor such a detector • ET DS documentcurrentlyputtogether (~350-400 pages) • presentationofthe ET DS 20 May 2011 in Cascina Moriond Meeting 2011

  5. Laser power vs. Cryogenics cryogenictemperaturesbeneficial high laser power beneficial CONFLICT? Moriond Meeting 2011

  6. Optical layout – Xylophone concept Low Frequency High Frequency [S. Hild et al., CQG 27 (2010), ET note ET-0135B-10] Moriond Meeting 2011

  7. Optical layout – IncludedTechniques • high power lasers • 1064 nmfor ET-HF (approx. 500 W) • 1550 nmfor ET-LF (approx. 3 W) • arm cavities • ET-HF  3 MW circulating in cavity • ET-LF  18 kW circulating in cavity • power andsignalrecycling • 10dB squeezing • triangularshape, arm length 10 km • LG33mode in ET-HF • … [seetalkbyP. Kwee] [seetalkby R. Schnabel afterwards] focus on ET-LF Moriond Meeting 2011

  8. Thermal noiseofopticalcomponents • TN will beimportantforthe ET-LF interferometer • startingpoint: ET-LF mirrormass 211 kg (supressrad. pressurenoise) (compareto ~ 40 kg in advanceddetectors) arm length: 10 km • reductionof thermal noiseby: • cryogenics • large beams • newmaterials • alternative techniques (e.g. replacementsforclassicalcoatings) [seetalkby F. Brückner in thissession] Moriond Meeting 2011

  9. Thermal noise - Bulk =0 possibleforsomematerials, e.g. silicon (@ 18 and 125 K) • Thermo-elastic noise: • Brownian thermal noise: [Braginsky 1999] [Liu, Thorne 2000] [Liu, Thorne 2000] [Bondu, Hello, Vinet 1998, Liu, Thorne 2000] beam diameter temperature Moriond Meeting 2011

  10. Thermal noise - Coatings • Thermo-elastic noise: • Brownian thermal noise: [Braginsky, Fejer et al. 2004] [Harry et al. 2002] beam diameter temperature Moriond Meeting 2011

  11. Thermal noise – Bulk Material amorphousmaterialsshow a large losspeakatlowtemperatures crystallinematerialswellsuitedforcryogenicuse [Nawrodt, U Jena] Moriond Meeting 2011

  12. Thermal noise – Material Choice • twocandidatematerials * bondstrengthmight not besufficient (silicatebonding) (furtherinvestigationneeded) Moriond Meeting 2011

  13. 800 C 800 C 800 C 800 C 800 C 800 C 800 C 800 C 800 C 600 C 600 C 600 C 600 C 600 C 600 C 600 C 400C 400C 400C 400C 300C 300C Thermal noise–Coatings • coating thermal noisedominates all other thermal noisesourcesofthemirrors in currentdetectors (coating = amorphous) • large R&D ongoingtounderstandlossmechanisms annealingtantalato different temperatures [I. Martin, U Glasgow] [seetalkby S. Rowan on Saturday] Moriond Meeting 2011

  14. Thermal Noise - Estimates 300 K 20 K Si(111) testmass HR stack(18 doublets, Ta2O5:TiO2, SiO2) • w=90mm neededtosupresscoatingBrowniannoise • testmassdia. ~ 50cm, thickness: ~46cm (toreach211kg) Moriond Meeting 2011

  15. Thermal Noise – Temperature Dependence 5 K Moriond Meeting 2011

  16. Thermal Noise – Temperature Dependence 8 K Moriond Meeting 2011

  17. Thermal Noise – Temperature Dependence 10 K Moriond Meeting 2011

  18. Thermal Noise – Temperature Dependence 12 K Moriond Meeting 2011

  19. Thermal Noise – Temperature Dependence 14 K Moriond Meeting 2011

  20. Thermal Noise – Temperature Dependence 16 K Moriond Meeting 2011

  21. Thermal Noise – Temperature Dependence 18 K Moriond Meeting 2011

  22. Thermal Noise – Temperature Dependence 20 K Moriond Meeting 2011

  23. Thermal Noise – Temperature Dependence 22 K Moriond Meeting 2011

  24. Thermal Noise – Temperature Dependence 24 K Moriond Meeting 2011

  25. Thermal Noise – Temperature Dependence 26 K Moriond Meeting 2011

  26. Thermal Noise – Temperature Dependence 28 K Moriond Meeting 2011

  27. Thermal Noise – Temperature Dependence 30 K Moriond Meeting 2011

  28. Thermal Noise – Temperature Dependence 40 K Moriond Meeting 2011

  29. Thermal Noise – Temperature Dependence 50 K Moriond Meeting 2011

  30. Thermal Noise – Temperature Dependence 60 K Moriond Meeting 2011

  31. Thermal Noise – Temperature Dependence 70 K Moriond Meeting 2011

  32. Thermal Noise – Temperature Dependence 80 K Moriond Meeting 2011

  33. Thermal Noise – Temperature Dependence 90 K Moriond Meeting 2011

  34. Thermal Noise – Temperature Dependence 100 K Moriond Meeting 2011

  35. Thermal Noise – Temperature Dependence 110 K Moriond Meeting 2011

  36. Thermal Noise – Temperature Dependence 115 K Moriond Meeting 2011

  37. Thermal Noise – Temperature Dependence 120 K Moriond Meeting 2011

  38. Thermal Noise – Temperature Dependence 125 K Moriond Meeting 2011

  39. Thermal Noise – Temperature Dependence 130 K Moriond Meeting 2011

  40. Thermal Noise – Temperature Dependence 140 K Moriond Meeting 2011

  41. Thermal Noise – Temperature Dependence 150 K Moriond Meeting 2011

  42. Thermal Noise – Temperature Dependence 200 K Moriond Meeting 2011

  43. Thermal Noise – Temperature Dependence 250 K Moriond Meeting 2011

  44. Thermal Noise – Temperature Dependence 300 K Moriond Meeting 2011

  45. Thermal Noise – Choice ofTemperature • all temperaturesbelow 20 K aresuitedfromthepointof thermal noise • design choice: 10 K operational temperatureatthemirrortoallowsafety in (so far) unknown/badlyknown material parameters • cryogenictestmass • Si(111) • temperature 10 K • diameter: 45…50cm • thickness: 45…60cm • mass: 211kg SEMICONDUCTOR industry 10 K Moriond Meeting 2011

  46. Suspensions - Overview • requirements: • suspend 211 kg oftestmass • low thermal noisecontribution • seismicisolation • keepthetemperatureconstantatthetestmasses (10 K) • reducedgravitygradientnoise (underground + GGN reduction) • splitintoupperandlowersuspension seismicisolation additionally: goingundergroundforNewtoniannoisereduction low thermal noise extractionofheat Moriond Meeting 2011

  47. Suspensions – Uppersuspension S. Braccini et al. GWADW Kyoto • Superattenuator will beadoptedtothe ET • requirementsfortheupperstage • total height: 17 meters • 6 stages (equaldist. spacing) Moriond Meeting 2011

  48. Suspensions – Lower Stage modellingsuspension thermal noise [P. Puppo, Rome] investigationofsurfacelosses in silicon [U Jena/ U Glasgow] Moriond Meeting 2011

  49. Suspensions – Lower Stage suspension design iscompliantwiththe thermal noiserequirements [P. Puppo, Rome] Moriond Meeting 2011

  50. Suspensions – Lower Stage heatextractionthroughlower stage [P. Puppo, Rome] Moriond Meeting 2011

More Related