290 likes | 625 Views
L32:Low Power System On Chip. Jun-Dong Cho SungKyunKwan Univ. Dept. of ECE, Vada Lab. http://vada.skku.ac.kr. Introduction to SOC. SOC will bridge the gap b/w s/w and their implementation in novel, energy-efficient silicon architecture.
E N D
L32:Low Power System On Chip Jun-Dong Cho SungKyunKwan Univ. Dept. of ECE, Vada Lab. http://vada.skku.ac.kr
Introduction to SOC • SOC will bridge the gap b/w s/w and their implementation • in novel, energy-efficient silicon architecture. • In SOC design, chips are assembled at IP block level (design reusable) and IP interfaces rather than gate level • SOC specs are coming from ICT system engineers rather • than RTL descriptions.
Common Fabric for IP Blocks • Soft IP blocks are portable, but not as predictable as hard IP. • Hard IP blocks are very predictable since a specific physical implementation can be characterized, but are hard to port since are often tied to a specific process. • Common fabric is required for both portability and predictability. • Wide availability: Cell Based Array, metal programmable architecture that provides the performance of a standard cell and is optimized for synthesis.
Four main applications • Set-top box: Mobile multimedia system, base station for the home local-area network. • Digital PCTV: concurrent use of TV,3D graphics, and Internet services • Set-top box LAN service: Wireless home-networks, multi-user wireless LAN • Navigation system: steer and control traffic and/or goods-transportation
Silicon in 2010 Die Area: 2.5x2.5 cm Voltage: 0.6 V Technology: 0.07 m
Portable systems long battery life light weight small form factor IC priority list power dissipation cost performance Technology direction Reduced voltage/power designs based on mature high performance IC technology, high integration to minimize size, cost, power, and speed Why Lower Power
Power(W) Alpha 21164 Alpha 21264 50 P III 500 45 P II 300 40 35 Alpha21064 200 30 25 P6 166 20 P5 66 15 P-PC604 133 10 i486 DX2 66 P-PC601 50 i486 DX25 5 i386 DX 16 i486 DX4 100 i286 i486 DX 50 P-PC750 400 1980 1985 1990 1995 2000 year Microprocessor Power Dissipation
Power-hungry Applications • Signal Compression: HDTV Standard, ADPCM, Vector Quantization, H.263, 2-D motion estimation, MPEG-2 storage management • Digital Communications: Shaping Filters, Equalizers, Viterbi decoders, Reed-Solomon decoders
New Computing Platforms • SOC power efficiency more than 10GOPs/w • Higher On Chip System Integration: COTS: 100W, SOAC:10W (inter-chip capacitive loads, I/O buffers) • Speed & Performance: shorter interconnection,fewer drivers,faster devices,more efficient processing artchitectures • Mixed signal systems • Reuse of IP blocks • Multiprocessor, configurable computing • Domain-specific, combined memory-logic
Physical gap • Timing closure problem: layout-driven logic and RT-level synthesis • Energy efficiency requires locality of computation and storage: match for stream-based data processing of speech,images, and multimedia-system packets. • Next generation SOC designers must bridge the architectural gap b/w system specification and energy-efficient IP-based architectures, while CAE vendors and IP providers will bridge the physical gap.
Three Factors affecting Energy • Reducing waste by Hardware Simplification: redundant h/w extraction, Locality of reference,Demand-driven / Data-driven computation,Application-specific processing,Preservation of data correlations, Distributed processing • All in one Approach(SOC): I/O pin and buffer reduction • Voltage Reducible Hardwares • 2-D pipelining (systolic arrays) • SIMD:Parallel Processing:useful for data w/ parallel structure • VLIW: Approach- flexible
Example2: IBM’s PowerPC Lower Power Architecture • Optimum Supply Voltage through Hardware Parallel, Pipelining ,Parallel instruction execution • 603e executes five instruction in parallel (IU, FPU, BPU, LSU, SRU) • FPU is pipelined so a multiply-add instruction can be issued every clock cycle • Low power 3.3-volt design • Use small complex instruction with smaller instruction length • IBM’s PowerPC 603e is RISC • Superscalar: CPI < 1 • 603e issues as many as three instructions per cycle • Low Power Management • 603e provides four software controllable power-saving modes. • Copper Processor with SOI • IBM’s Blue Logic ASIC :New design reduces of power by a factor of 10 times
Power-Down Techniques • Lowering the voltage along with the clock actually alters the energy-per-operation of the microprocessor, reducing the energy required to perform a fixed amount of work
Voltage vs Delay • Use Variable Voltage Scaling or Scheduling for Real-time Processing • Use architecture optimization to compensate for slower operation, e.g., Parallel Processing and Pipelining for concurrent increasing and critical path reducing.
Why Copper Processor? • Motivation: Aluminum resists the flow of electricity as wires are made thinner and narrower. • Performance: 40% speed-up • Cost: 30% less expensive • Power: Less power from batteries • Chip Size: 60% smaller than Aluminum chip
Silicon-on-Insulator • How Does SOI Reduce Capacitance ? • Eliminated junction capacitance by using SOI (similar to glass) is placed between the impuritis and the silicon substrate • high performance, low power, low soft error
SOC Co-Design Challenges • Current systems are complex and heterogenous Contain many different types of components • Half of the chip can be filled with 200 low-power, RISC-like processors (ASIP) interconnected by field-programmable buses, embedded in 20Mbytes of distributed DRAM and flash memory, Another Half: ASIC • Computational power will not result from multi-GHz clocking but from parallelism, with below 200 MHz. This will greatly simplify the design for correct timing, testability, and signal integrity.
Configurability • One-M gate reconfigurable, one-M gate hardwired logic. • 50GIPS for programmable components or 500 GIPS for dedicated hardwares • Reduce design risks for which NRE costs will become dominant • 1 V with the watt range
Bridging the architectural gap • Product reliability: design at a level far above the RT level, with reuse factors in excess of 100 • Trade-off: 100MOPs/watt (microprocessor) 100GOPs/watt (hardwired) Reconf. Computing with a large number of computing nodes and a very restricted instruction set (Pleiades)
Avant! www.avanticorp.com Cadence www.cadence.com Duet Tech www.duettech.com Escalade www.escalade.com Logic visions www.logicvision.com Mentor Graphics www.mentor.com Palmchip www.palmchip.com Sonic www.sonicsinc.com Summit Design www.summit-design.com Synopsys www.synopsys.com Topdown design solutions www.topdown.com Xynetix Design Systems www.xynetix.com Zuken-Redac www.redac.co.uk SOC CAD Companies