Categorization and sorting drugs
Download
1 / 15

Categorization and Sorting : DRUGS - PowerPoint PPT Presentation


  • 73 Views
  • Updated On :

Categorization and Sorting : DRUGS. A Study of folk-categorization of recreational drugs Initiated as Class Exercise in Graduate course of Methods of Systematic Data Collection University of Essex, 2001 … with subsequent replications. Stage 1: Definition & Elicitation.

Related searches for Categorization and Sorting : DRUGS

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Categorization and Sorting : DRUGS' - rusti


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Categorization and sorting drugs l.jpg
Categorization and Sorting : DRUGS

  • A Study of folk-categorization of recreational drugs

  • Initiated as Class Exercise in Graduate course of Methods of Systematic Data Collection

  • University of Essex, 2001

  • … with subsequent replications


Stage 1 definition elicitation l.jpg
Stage 1: Definition & Elicitation

  • FIRST: Method of Free-listingused to elicit drug names

    • “Drugs” is deliberately unspecific, and is NOT intended to be restricted to either “Ethical” (Prescribed), or to “Recreational” drugs. Part of the exercise is to determine what the subject defines as counting as “Drugs”

  • Free-listing is really “retrieval from memory”, and this is already clustered in recall (Bousfield 1958), so Interviewers are alerted to significance of time-gaps as category markers


Slide3 l.jpg

RANK & FREQUENCY OF MENTION OF DRUGS (FREE-LISTING)

(31)

11 Cannabis

11 Cocaine

9 Heroin

8 Ecstasy

8 LSD

8 Poppers (Nitrites)

7 Glue

6 Alcohol

6 Dope

5 Aspirin

5 Cough mixture (inc expectorant and dry)

4 amphetamine

4 Morphine

4 Tobacco

3 Caffeine

3 Marijuana

3 Paracetamol

3 Prozac

3 Steroids

2 Barbiturates

2 Chocolate

2 Ibuprofen

2 Immodium

2 Insulin

2 Magic-mushrooms

2 Methadone

2 Penicillin

2 speed

2 Temazepam

2 Valium

2 Viagra

Only 1 Mention

Ampicillin

Cimetedine

Co_codamol

*crack

Datura

Diclofenic

Dopamine

GHB

GTN

*hemp

*Kaolin and Morphine

Lithium

Maxalon

*Milk of magnesia

*Nicotine

Nifedapine

Nutmeg

Omnopon

poppy seed tea

Ranitadine

Stemetil

Thorazine

Tylex

*Vitamins

* Possibles


Drug names objects l.jpg
Drug-names (“objects”)

  • 28 drug-names retained (with ‘street’ synonyms)

  • 1. ALCOHOL 2. AMPHETAMINE 3. ASPIRIN

  • 4. BARBITURATES 5. CAFFEINE 6. CANNABIS

  • 7. CHOCOLATE 8. COCAINE 9. COUGH MXT

  • 10. CRACK 11. ECSTASY 12. GHB

  • 13. GLUE 14. HEROIN 15. IMMODIUM

  • 16. INSULIN 17. KETAMINE 18. LSD

  • 19. MAGIC-MUSHR.20. METHADONE 21.PCP

  • 22. PENICILLIN 23. POPPERS 24. PROZAC

  • 25. STEROIDS 26. TEMAZEPAM 27. TOBACCO

  • 28. VIAGRA


Slide5 l.jpg

Method: Free-sorting*Coxon, A.P.M. (1999) Sorting Data: Collection and Analysis, Newbury Pk, Ca: Sage Publications (Quantitative Applications in the Social Sciences, 07-127)

  • Randomised set of cards with drug-name & synonymns handed to S;

    • (ID # on back)

  • asked to sort them in to as many or as few groups/piles as they wish in terms of similarity or “what goes with what”

  • encouraged to verbalise during task, and “break, re-make or re-arrange” at end until satisfied

  • give short name & description of each pile/group

  • choice of 1,2 exemplars/prototypes of all non-singleton groups

  • any “leftovers” each allocated to own group.

    • NB (for qual/quant integrationists)

      • Q&Q elicited and stored together for contextual analysis


Fred s sorting of the 28 drugs pdf 2 4 6 5 2 2 2 4 6 3 1 2 3 5 6 6 1 1 1 7 3 3 8 6 3 5 3 6 l.jpg
Fred’s sorting of the 28 drugs PDF =2 4 6 5 2 22 4 6 3 1 2 3 5 6 6 1 11 7 3 3 8 6 3 5 3 6

SO: Fred’s Groups/piles are:

  • 1 = ecs,ket,LSD,Mag

  • 2 = alc,caf,can,cho,GHB

  • 3 = cra,glu,PCP,pen,ste,tob

  • 4 = amp, coc

  • 5 = bar,her,tem

  • 6 = asp,cou,imm,ins,pro,via

    • 7 = methadone

    • 8 = poppers


Fred s sorting converted into simple co occurrence matrix via sortpac l.jpg
FRED's SORTING CONVERTED INTO SIMPLE CO-OCCURRENCE MATRIX (VIA SORTPAC)

  • 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

  • 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

  • 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

  • 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

  • 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

  • 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

  • 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

  • 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

  • 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

  • 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

  • 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

  • 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

  • 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

  • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

  • 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

  • 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

  • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

  • 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1

  • 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

  • 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

  • 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0

  • 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1


Slide8 l.jpg

Aggregation (sum) of 68 Subjects’ (0,1) data (VIA SORTPAC)matrices ->M1: x(j,k) = no of Ss who put objects j & k in same group.Hence Similarity measure

  • 68 04 06 04 49 18 47 06 09 07 0500 13 06 06 08 02 04 09 04 02 06 03 05 03 04 55 05

  • 04 68 04 22 02 24 02 37 04 32 45 18 14 27 04 07 30 31 25 17 24 04 28 07 22 12 04 08

  • 06 04 68 20 09 03 08 00 50 00 00 02 03 02 36 49 11 00 03 21 06 57 03 29 21 13 08 37

  • 04 22 20 68 03 11 02 21 19 21 18 16 13 21 14 18 24 20 15 28 30 19 21 19 21 27 03 18

  • 49 02 09 03 68 08 58 05 09 04 06 03 07 02 06 06 01 02 05 03 02 07 03 07 06 02 52 07

  • 18 24 03 11 08 68 08 27 06 19 25 06 23 23 03 04 09 29 39 09 12 03 15 05 11 05 13 04

  • 47 02 08 02 58 08 68 03 09 03 03 01 06 01 06 06 01 02 04 02 01 07 01 06 04 02 50 06

  • 06 37 00 21 05 27 03 68 00 46 38 20 23 51 00 03 23 38 19 20 23 00 26 02 11 10 05 01

  • 09 04 50 19 09 06 09 00 68 01 01 03 06 03 35 40 10 01 03 20 07 47 05 26 18 13 08 28

  • 07 32 00 21 04 19 03 46 01 68 38 20 24 47 00 02 24 44 21 18 25 00 25 03 10 11 04 01

  • 05 45 00 18 06 25 03 38 01 38 68 17 20 30 00 02 22 43 31 14 23 00 30 03 13 10 03 04

  • 00 18 02 16 03 06 01 20 03 20 17 68 11 18 09 04 26 15 12 12 29 01 28 05 09 16 02 06

  • 13 14 03 13 07 23 06 23 06 24 20 11 68 23 04 04 10 26 18 11 15 03 14 07 10 11 07 07

  • 06 27 02 21 02 23 01 51 03 47 30 18 23 68 02 01 20 42 23 21 22 02 21 05 14 14 03 03

  • 06 04 36 14 06 03 06 00 35 00 00 09 04 02 68 31 12 00 04 16 11 36 08 24 11 18 06 21

  • 08 07 49 18 06 04 06 03 40 02 02 04 04 01 31 68 11 00 00 25 04 56 05 29 19 15 08 36

  • 02 30 11 24 01 09 01 23 10 24 22 26 10 20 12 11 68 18 1818 35 09 30 06 17 20 02 11

  • 04 31 00 20 02 29 02 38 01 44 43 15 26 42 00 00 18 68 32 15 23 00 22 02 06 11 02 03

  • 09 25 03 15 05 39 04 19 03 21 31 12 18 23 04 00 18 32 68 06 20 03 21 06 14 10 07 06

  • 04 17 21 28 03 09 02 20 20 18 14 12 11 21 16 25 18 15 06 68 15 22 13 25 21 19 03 21

  • 02 24 06 30 02 12 01 23 07 25 23 29 15 22 11 04 35 23 20 15 68 05 34 09 11 28 02 06

  • 06 04 57 19 07 03 07 00 47 00 00 01 03 02 36 56 09 00 03 22 05 68 03 35 24 18 06 40

  • 03 28 03 21 03 15 01 26 05 25 30 28 14 21 08 05 30 22 21 13 34 03 68 07 13 18 03 06

  • 05 07 29 19 07 05 06 02 26 03 03 05 07 05 24 29 06 02 06 25 09 35 07 68 25 22 04 34

  • 03 22 21 21 06 11 04 11 18 10 13 09 10 14 11 19 17 06 14 21 11 24 13 25 68 16 07 35

  • 04 12 13 27 02 05 02 10 13 11 10 16 11 14 18 15 20 11 10 19 28 18 18 22 16 68 03 15

  • 55 04 08 03 52 13 50 05 08 04 03 02 07 03 06 08 02 02 07 03 02 06 03 04 07 03 68 06

  • 05 08 37 18 07 04 06 01 28 01 04 06 07 03 21 36 11 03 06 21 06 40 06 34 35 15 06 68

  • 00 (ALC & GBH) lowest – no-one put into same pile: most different/distant

  • 57 (ASP & PEN) highest: 87% put into same pile: most similar / proximate


Details of scaling l.jpg
DETAILS OF SCALING (VIA SORTPAC)

  • DATA: 2W1M FSM, similarities

  • TRANSFORM: Weak Monotonic / Ord.

  • MODEL: Euclidean Distance

  • Program: NewMDSX MINISSA

    • 2D, weak Monotonicity, Primary Approach Ties

      ______________________________________________________

  • SOLUTION:

    • Stress1 = 0.097 (vs Spence random 0.290); very acceptable!


Shepard diagram any ideas l.jpg
SHEPARD (VIA SORTPAC) diagram -any ideas?


2d m1 minissa now let s do it l.jpg
2D- M1 MINISSA (VIA SORTPAC)… NOW LET’S DO IT!)


Hiclus of 28 drugs how many clusters l.jpg
HICLUS of 28 DRUGS: (VIA SORTPAC)how many clusters?



Finally l.jpg
& finally … (VIA SORTPAC)

Let’s use interactive MDS (PERMAP) …

  • to clear up the structure

  • using information about

    • outliers

    • liaison points / links

      to strip down & INTERPRET the 2D solution

  • let’s do it …