1 / 20

Chapter 3c: Multiplication and Division

Chapter 3c: Multiplication and Division. Multiplication. 4 2 1. Multiplying two numbers A and B. x 1 2 3. 1 2 6 3. n partial products, where B is n digits long. 8 4 2. + 4 2 1. 5 1 7 8 3. n additions. In Binary. 6 x 5. 1 1 0. Each partial product is either:

ronda
Download Presentation

Chapter 3c: Multiplication and Division

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 3c: Multiplication and Division

  2. Multiplication 4 2 1 Multiplying two numbers A and B x 1 2 3 1 2 6 3 n partial products, where B is n digits long 8 4 2 + 4 2 1 5 1 7 8 3 n additions In Binary... 6 x 5 1 1 0 Each partial product is either: 110 (A*1) or 000 (A*0) x 1 0 1 1 1 0 0 0 0 + 1 1 0 Equals 30 Note: Product may take as manyas two times the number of bits! 1 1 1 1 0

  3. Multiplication Steps Step1: LSB of multiplier is 1 --> Add a copy of multiplicand 1 1 0 0 1 1 0 1 1 0 0 0 Step2: Shift multiplier right to reveal new LSB Shift multiplicand left to multiply by 2 x 1 0 1 0 1 1 1 1 0 Step 3: LSB of multiplier is 0 --> Add zero 0 0 0 0 1 1 0 0 0 + Step 4: Shift multiplier right, multiplicand left 0 0 1 1 0 1 1 1 1 0 Step5: LSB of multiplier is 1 --> Add a copy of multiplicand Done! Thus, we need hardware to: 1. Hold multiplier (32 bits) and shift it right 2. Hold multiplicand (32 bits) and shift it left (requires 64 bits) 3. Hold product (result) (64 bits) 4. Add the multiplicand to the current result

  4. initialize registers; Multiplicand ShLeft for (i=0; i<32; i++) { 64 bit if LSB(multiplier)==1{ ShRight Multiplier product += multiplicand; 32 bit } 64-bit left shift multiplicand 1; right shift multiplier 1; Product Write 64 bit } Multiplication We need hardware to: 1. Hold multiplier (32 bits) and shift it right 2. Hold multiplicand (32 bits) and shift it left (requires 64 bits) 3. Hold product (result) (64 bits) 4. Add the multiplicand to the current result 5. Control the whole process Algorithm: Control

  5. xxxx1101 ShLeft 8 bit ShRight 0101 4 bit 8-bit Control 000000000 Write 8 bit Multiplication example: 1101 x 0101 MultiplicandMultiplierProduct xxxx1101010100000000 Initial Values • 1-->Add Multiplicand to Product • Shift M’cand left, M’plier right + xxx11010001000001101 • 0-->Do nothing • Shift M’cand left, M’plier right xx110100000100001101 + x1101000000001000001 • 1-->Add Multiplicand to Product • Shift M’cand left, M’plier right 11010000000001000001 • 0-->Do nothing • Shift M’cand left, M’plier right 1101 x 0101 = 0100000113 x 5 = 65 Note: Using 4/8 bit values forexample. Assume unsigned integers.

  6. ShRight Multiplicand Multiplier 32 bit 32 bit Control 32-bit Write 64 bit ShRight LH Product RH Product Algorithm: initialize registers; Multiplicand ShLeft for (i=0; i<32; i++) { 64 bit if LSB(multiplier)==1{ ShRight Multiplier LH product += multiplicand; 32 bit } 64-bit right shift product 1; Control right shift multiplier 1; Product Write 64 bit } Improved Multiplier Even though we’re only adding 32 bits at a time, we need a 64-bit adder Results from shifting multiplicand left over and over again Instead, hold the multiplicand still and shift the product register right! Now we’re only adding 32 bits each time Extra bit for carryout

  7. ShRight Multiplicand Multiplier 32 bit 32 bit Control 32-bit Write 0011+ 1101 10000 64 bit ShRight LH Product RH Product Improved Multiplier: 1101 x 0101 MultiplicandMultiplierProduct 110101010000 xxxx Initial Values • 1-->Add Multiplicand to LH Product • Shift Productright, M’plier right + 110101011101 xxxx 1101x0100110 1xxx • 0-->Do nothing • Shift Product right, M’plier right 1101xx010011 01xx + • 1-->Add Multiplicand to Product • Shift Product right, M’plier right 1101xx0110000 01xx 1101xxx01000 001x • 0-->Do nothing • Shift Product right, M’plier right 1101xxxx0100 0001 1101 x 0101 = 0100000113 x 5 = 65

  8. ShRight Multiplicand Multiplier Multiplicand 32 bit 32 bit 32 bit Control 32-bit Control 32-bit Algorithm: Write Write 64 bit ShRight initialize registers (multiplier in RH product); LH Product RH Product ShRight LH Product Multiplier 64 bit for (i=0; i<32; i++) { if LSB(multiplier)==1{ LH product += multiplicand; right shift product-multiplier 1; } } Improved Improved Multiplier Note that we’re shifting bits out of the multiplier and into the product Why not put these together into the same register As space opens up in the multiplier, overwrite it with the product bits

  9. 0011+ 1101 10000 Multiplicand 32 bit Control 32-bit Write ShRight LH Product Multiplier 64 bit Improved Multiplier: 1101 x 0101 MultiplicandProduct-Multiplier 110100000101 Initial Values • 1-->Add Multiplicand to LH Product • Shift Product-M’plier right + 11011101 0101 11010110 1010 • 0-->Do nothing • Shift Product-M’plier right 11010011 0101 + • 1-->Add Multiplicand to Product • Shift Product-M’plier right 1101100000101 110110000010 • 0-->Do nothing • Shift Product-M’plier right 11010100 0001 1101 x 0101 = 0100000113 x 5 = 65

  10. Rs 32 bit Control 32-bit Write ShRight Hi Lo 64 bit MIPS Multiplying MIPS hardware does32-bit multiplies32-bit x 32-bit --> 64 bit mult Rs, Rt -->Upper 32-bits of result in HiLower 32-bits of result in Lo The 64-bit product register is divided into two parts: Hi: Holds upper 32 bits of product Lo: Holds lower 32 bits mul Rd, Rs, Rt --> mult Rs, Rt mflo Rd mfhi $t5 # move Hi to register $t5 mflo $t6 # move Lo to register $t6

  11. -45 -000 -30 -101 -30 -101 -15 -101 -000 Dividing quotient Dividend = Divisor * Quotient + Remainder divisor 3 2 2 1 15 48323 dividend 14 5 3 3 0 1 1 1 0 101 1001001 3 2 73 100 1 2 3 remainder 100 0 8 11 0 Idea: Repeatedly subtract divisor. Shift as appropriate. 1 1 3 11

  12. -000 -101 -101 -101 -000 Dividing Looking at the alignment a little differently… 0 1 1 1 0 0 1 1 1 0 0101 01001001 101 1001001 Make the dividend 8 bits and the divisor 4 bits by filling in with 0’s -01010000 01001001 100 1 -00101000 Each iteration, re-express the entire remainder as 8 bits Note: At any step, the dividend = divisor * quotient + current remainder 00100001 100 0 -00010100 00001101 11 0 -00001010 00000011 Try subtracting the divisor from the current remainder each time – if it doesn’t fit, restore the remainder 1 1 -00000101 00000011 11

  13. Divisor ShRight 64 bit if (remainder< 0) { ShLeft Quotient remainder+=divisor;left shift quotient 1, LSB=0 32 bit 64-bit } else { left shift quotient 1, LSB=1 Control } Remainder Write right shift divisor 1 64 bit } Division We need hardware to: 1. Hold divisor (32 bits) and shift it right (requires 64 bits) 2. Hold remainder (64 bits) 3. Hold quotient (result) (32 bits) and shift it left 4. Subtract the divisor from the current result Algorithm: 5. Control the whole process initialize registers (divisor in LHS); for (i=0; i<33; i++) { remainder -= divisor;

  14. Limitations of Division Our setup: 64-bit dividend, 32-bit divisor, 32-bit quotient Some choices of divisor result in a quotient larger than 32 bits 0x 32F2 4823 9AB0 132F 8321 8923 8382 0123 / 1 = 0x 32F2 4823 9AB0 132F 8321 8923 8382 0123 If the division result requires > 32 bits, it cannot be represented(equivalent to overflow)

  15. 5 3 2 1 4 Divisor ShRight 64 bit ShLeft Quotient 64-bit 32 bit Remainder Write Control 64 bit Division Example: 1001001/0101 QuotientDivisorRemainder xxxx0101000001001001 Initial Values (Divisor in LHS) • 1a.Rem. <-- Rem-Divisor - • 1b.Rem.<0, Add Div., LSh Q, Q0=0; RSh Div. xxxx0101000011111001 • 2a.Rem. <-- Rem-Divisor xxx00010100001001001 • 2b.Rem>=0, LSh Q, Q0=1; RSh Div. - xxx00010100000100001 • 3a.Rem. <-- Rem-Divisor • 3b.Rem>=0, LSh Q, Q0=1; RSh Div. xx010001010000100001 - • 4a.Rem. <-- Rem-Divisor xx010001010000001101 • 4b.Rem>=0, LSh Q, Q0=1; RSh Div. x0110000101000001101 • 5a.Rem. <-- Rem-Divisor - • 5b.Rem<0, Add Div., LSh Q, Q0=0; RSh Div. x0110000101000000011 01110000010100000011 - 01110000010111111110 11100000001000000011 1001001/0101 = 1110 rem 001173/5 = 14 rem 3 N+1 Steps, but if 1st step produces a ‘1’ the result requires N+1 bits and cannot be represented

  16. Algorithm: initialize registers for (i=0; i<32; i++) { left shift remainder 1; Divisor Divisor ShRight 32 bit LH remainder -= divisor; 64 bit ShLeft if (remainder< 0) Quotient ShLeft { Quotient LH remainder+=divisor;left shift quotient 1, LSB=0; 32 bit 32-bit 32 bit 64-bit } else { Write Control left shift quotient 1, LSB=1; ShLeft LH Rem. RH Rem. Control } Remainder Write 64+1 bit } 64 bit Extra bit for shift out of MSB Improved Divider As with multiplication, we’re using a 64-bit divisor and a 64-bit ALUwhen there are only 32 useful bits. The 64-bit divisor is needed just to provide the correct alignment. Instead of shifting the divisor right, we shift the remainder left. However, we’ll occasionally shift a 1 out of the MSB (temporarily) – we’ll needan extra bit for that. Also, since we know the first subtraction is useless,don’t do it (still shift the remainder left, though).(Changes from 33 iterations to 32!)

  17. 1 3 4 2 Divisor 32 bit ShLeft Quotient 32 bit 32-bit Write Control ShLeft LH Rem. RH Rem. 64+1 bit Improved Divider: 1001001/0101 Initial Values QuotientDivisorRemainder xxxx010101001001 • 0. LSh Rem • 1a.Rem. <-- Rem-Divisor xxxx01011001001x - • 1b.Rem>=0, LSh Q, Q0=1; LSh Rem. xxxx01010100001x • 2a.Rem. <-- Rem-Divisor xxx10101100001xx • 2b.Rem>=0, LSh Q, Q0=1; LSh Rem. - xxx10101001101xx • 3a.Rem. <-- Rem-Divisor xx11010101101xxx • 3b.Rem>=0, LSh Q, Q0=1; LSh Rem. - • 4a.Rem. <-- Rem-Divisor xx11010100011xxx • 4b.Rem<0, Add Div., LSh Q, Q0=0 x1110101 0011xxxx - x11101011110xxxx 111001010011xxxx 1001001/0101 = 1110 rem 001173/5 = 14 rem 3

  18. Algorithm: initialize registers left shift rem-quotient 1; Divisor for (i=0; i<32; i++) { Divisor 32 bit LH remainder -= divisor; 32 bit if (remainder< 0) ShLeft { Quotient LH remainder+=divisor;left shift rem-quotient 1, LSB=0; 32 bit 32-bit 32-bit } else { Write Control left shift rem-quotient 1, LSB=1; Write Control ShLeft LH Rem. Rem-Quot. } ShLeft LH Rem. RH Rem. 64+1 bit 64 bit } Improved Improved Divider Note that the remainder is emptying at the same rate that the quotient is filling. Combine the two! A problem: We’re shifting the remainder left 33 times, but it should be 32. (Quotient doesn’t exist on first iteration, so it’s shifted only 32 times) Undo the extra shift by shifting the remainder (LH remainder-quotient) right by1 at the end right shift LH remainder-quotient 1

  19. 4 3 2 1 Divisor 32 bit 32-bit Write Control ShLeft LH Rem. Rem-Quot. 64+1 bit Improved Improved Divider: 01110100/1001 Initial Values DivisorRemainder-Quotient 100101110100 • 0. LSh Rem-Quo. • 1a.Rem <-- Rem-Divisor 100111101000 - • 1b.Rem>=0, LSh Rem-Quo, Q0=1 100101011000 • 2a.Rem. <-- Rem-Divisor 100110110001 • 2b.Rem>=0, LSh Rem-Quo,Q0=1 - 100100100001 • 3a.Rem. <-- Rem-Divisor 100101000011 • 3b.Rem>=0, LSh Rem-Quo, Q0=1 - • 4a.Rem. <-- Rem-Divisor 100111010011 • 4b.Rem<0, Add Div., LSh Rem-Quo, Q0=0 100110000110 - 100111110110 1001100001100 • Final: RSh Rem 1 100110001100 01110100/1001 = 1100 rem 1000116/9 = 12 rem 8

  20. Divisor 32 bit 32-bit Write Control ShLeft Hi Lo 64 bit MIPS Dividing MIPS hardware does64-bit / 32-bit division Result has two parts: Quotient in Lo Remainder in Hi div $t1,$t2Lo = $t1/$t2 (integer)Hi = $t1 % $t2 pseudoinstructions: div $t0, $t1, $t2$t0 = $t1/$t2 (integer)rem $t3, $t1, $t2$t3 = $t1 % $t2

More Related