slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Puntos de Lagrange: equilibrio gravitatorio PowerPoint Presentation
Download Presentation
Puntos de Lagrange: equilibrio gravitatorio

Loading in 2 Seconds...

play fullscreen
1 / 1

Puntos de Lagrange: equilibrio gravitatorio - PowerPoint PPT Presentation


  • 99 Views
  • Uploaded on

Puntos de Lagrange: equilibrio gravitatorio. Problema de los dos cuerpos. Problema de los tres cuerpos. Llamamos a así a la resolución del movimiento de dos cuerpos que interactúan entre sí.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Puntos de Lagrange: equilibrio gravitatorio' - ranae


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Puntos de Lagrange:

equilibrio gravitatorio

Problema de los dos cuerpos

Problema de los tres cuerpos

Llamamos a así a la resolución del movimiento de dos cuerpos que interactúan entre sí.

Ejemplo: la Luna y la Tierra, que se atraen gravitatoriamente, por lo que ambos giraran en torno al centro de masas del sistema

El caso de tres cuerpos que interactúan entre sí en vez de dos es irresoluble analíticamente, ya que nos encontramos con un sistema caótico (aquél que con una pequeña variación de las condiciones iniciales hace difícilmente abordable la determinación de las velocidades y posiciones de los cuerpos que lo componen).

Puntos de Lagrange: historia

Todo sistema caótico de este tipo termina o en múltiples colisiones, o en la explusión del sistema de alguno de los cuerpos que lo componen, provocando un equilibrio en el mismo. Ello implicaría sumar todas las interacciones gravitatorias sobre cada objeto en cada punto de su trayectoria.

Lagrange encontró una forma elegante de abordar el problema de forma analítica, dejándonos en su legado la mecánica langragiana, su hipótesis de partida para tratar de hallar la trayectoria de todo cuerpo fue la de determinar el camino que minimice la acción con el tiempo.

Dados tres cuerpos, uno de ellos mucho menor que los dos restantes, se pueden encontrar por este procedimiento cinco puntos de equilibrio, denominados en honor a Lagrage L1, L2, L3,L4, L5.

Nos situamos en 1772, el matemático Joseph-Louis Lagrange trabajaba en el llamado “problema de los tres cuerpos” cuando descubrió una particularidad de éste cuando el sistema se encuentra en ciertas condiciones.

La ambición de este matemático era encontrar una manera de determinar la interacción gravitatoria de un número arbitrario de cuerpos, que es un problema que se vuelve analíticamente irresoluble de manera general (sistema caótico)

Puntos de Lagrange

  • Los puntos L1, L2, L3 son “puntos de silla”, esto es, estables en una dirección e inestables en otra.
  • Los puntos L4, L5 son máximos, son inestables, pero cambia lentamente el potencial, lo que les dota en un área de cierta estabilidad.
  • Ejemplos de objetos:
  • L1: El Observatorio Solar y de la Heliosfera (SOHO), el Advanced Composition Explorer (ACE) está en una órbita Lissajous alrededor también del punto L1.
  • L2: La sonda Wilkinson Microwave Anisotropy Probe (WMAP) en la órbita alrededor del punto L2, del sistema Sol-Tierra.
  • L4 y L5: los asteroides troyanos, como los de Júpiter.

Juan Manuel Mariñoso Pascual - Depto. de Física, Universidad de Murcia