1 / 25

Fourier sparsity , spectral norm , and the Log-rank conjecture

Fourier sparsity , spectral norm , and the Log-rank conjecture. arXiv :1304.1245 Hing Yin Tsang 1 , Chung Hoi Wong 1 , Ning Xie 2 , Shengyu Zhang 1. The Chinese University of Hong Kong Florida International University. Motivation 1: Fourier analysis. Bool. Fourier.

Download Presentation

Fourier sparsity , spectral norm , and the Log-rank conjecture

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fourier sparsity, spectral norm, and theLog-rank conjecture arXiv:1304.1245 HingYin Tsang1, Chung Hoi Wong1, Ning Xie2, Shengyu Zhang1 The Chinese University of Hong Kong Florida International University

  2. Motivation 1: Fourier analysis Bool Fourier (sparsified) • Parseval: If , then. • Spectral norm:. Fourier sparsity: Qustion: What can we say about Boolean with smallor ? Characterization?

  3. Some known results • Results on learnability*1,testability*2, etc. • A structural result by Green and Sanders. • Theorem*3. can be written as , where and ’s are subspaces. • Question: Improve the doubly exponential bound? *1. Kushilevitz, Mansour, SIAM J. on Computing, 1993. *2. Gopalan, O’Donnell, Servedio, Shpilka, Wimmer, SIAM J. on Computing, 2011. *3. Green and Sanders. Geometric and Functional Analysis, 2008.

  4. Motivation 2: Communication complexity • Two parties, Alice and Bob, jointly compute a function . • known only to Alice and only to Bob. • Communication complexity*1: how many bits are needed to be exchanged? --- *1. Yao. STOC, 1979.

  5. Log-rank conjecture Log Rank Conjecture*2 • Rank lower bound*1 • combinatorial measure linear algebra measure. • Equivalent to a bunch of other conjectures. • related to graph theory*2; nonnegative rank*3, Boolean roots of polynomials*4, quantum sampling complexity*5. • Largest known gap*6: • Best previous upper bound*7: • Conditional*8: *1. Melhorn, Schmidt. STOC, 1982. *2. Lovász, Saks. FOCS, 1988. *3. Lovász. Book Chapter, 1990. *4. Valiant. Info. Proc. Lett., 2004. *5. Ambainis, Schulman, Ta-Shma, Vazirani, Wigderson, SICOMP 2003. *6. Nisan and Wigderson. Combinatorica, 1995. *7. Kotlov. Journal of Graph Theory, 1982. *8. Ben-Sasson, Lovett, Ron-Zewi, FOCS, 2012.

  6. Special class of functions • Since Log-rank conjecture appears too hard in its full generality,… • XOR functions: . --- • Include important functions such as Equality, Hamming Distance, Gap Hamming Distance. • Connection to Fourier: . • One approach*1: • : Parity decision tree complexity. (DT with queries like “”) *1. Zhang and Shi. Theoretical Computer Science, 2009.

  7. One easy case • The (total) degree of as a multi-linear polynomial over . • If , then even the standard decision tree complexity is small *1,2. • Question: Are all nonzero Fourier coefficients always located in low levels? • Answer*3: Not even after change of basis. • There are with but . *1. Nisan and Smolensky. Unpublished. *2. Midrijanis. arXiv/quant-ph/0403168, 2004. *3. Zhang and Shi. Theoretical Computer Science, 2009.

  8. Previous work • Special cases for . • : Symmetric *1 • : LTF *2 • : monotone *2 • : *3 • Hard case: much larger than • not touched yet. *1. Zhang and Shi. Quantum Information & Computation, 2009. *2. Montanaro and Osborne. arXiv:0909.3392v2, 2010. *3. Kulkarni and Santha. CIAC, 2013.

  9. Our results: starting point • While is not a good bridge between and , another degree may be. • : degree of as a polynomial over . • Compared to Fourier sparsity, is always small. • Fact*1. . *1. Bernasconi and Codenotti. IEEE Transactions on Computers, 1999.

  10. Our results: constant degree • Theorem 1. For with : • Log-rank conjecture holds for . Dependence on : “only” singly exponential. • Fourier sparseshort -DT • depends only on linear functions of input variables.

  11. Our results: constant degree • [GS08] can be written as , where and ’s are subspaces. • Theorem 2: If , then we improve doubly exponential bound to quasi-polynomial: [GS08] Green and Sanders. Geometric and Functional Analysis, 2008.

  12. Our results: small spectral norm • Theorem 3. For any Boolean , • , i.e. there is a large affine subspace (co-dim: ) on which is const. • . • Independent work [SV13]: , • Our bounds are quadratically better. [SV13]Shpilkaand Volk. ECCC, 2013.

  13. Our results: small spectral norm • Theorem 3. … • Corollary 4. • Recall: before our work, even slightly sublinear bound is conditional. • Later [Lov13]: for general Boolean . [Lov13]Lovett. ECCC, 2013.

  14. Our results: small spectral norm • [Gro97]. , • Corollary 5. , [Gro97] Grolmusz. Theoretical Computer Science, 1997.

  15. Our results: light tail • Theorem 6. If is sufficiently close to -sparse, then Log-rank Conjecture holds for . • Sufficiently close to sparse: has a light tail, in .

  16. Techniques *1. Chang. Duke Mathematical Journal, 2002. *2. Gopalan, O’Donnell, Servedio, Shpilka, Wimmer. SIAM Journal on Computing, 2011.

  17. Approach: Degree reduction • : min s.t. • . • Theorem*1,2. with bias and degree, . • Doesn’t work for us: . • Even worse, the dependence on is horrible. • Thus impossible to generalize to . *1. Green and Tao. Contributions to Discrete Mathematics, 2009. *2. Kaufman and Lovett. FOCS, 2008.

  18. A new rank • Linear polynomial rank (-): min s.t. where is linear and has • Compared to ,defined by ,we require a special . • Thus - • But we’ll show that even this -is small. • Now given - decomposation of , let’s see how to design a protocol for .

  19. Main Protocol • Linear polynomial rank (-): min s.t. where is linear and has • Main protocol: rounds; each round reduces -degree by at least 1 • regardless of values of and

  20. Main conjecture • Of course, communication cost depends on how large -is. • Conjecture 1. Boolean , - • Conjecture 1Log-rank Conj. for all XOR fn’s. • Most our results obtained by bounding -. • One simple bound: - • Decreasing degree is easier than .

  21. Sketch of proof of Thm 1, item (1) • Thm 1, item (1): • Sufficient to show that is small • Approach: Induction on . Apply IH on (discrete) derivative. • Derivative: . • Fact. . • Fact. .

  22. Sketch of proof of Thm 1, item (1) • By IH, affine w/ small codim&. • Lemma. When restricted on , half-space of Fourier coefficients disappear. • Study and their Fourier spectra. • , . • , . • On : vanishes, so does or . • Repeating times: kill all Fourier coeff.

  23. Summary

  24. Open • Prove -. • No counterexample even for • Other applications of -? • 1-hour talk at tomorrow’s one-day workshop on real analysis • 11:30 at Simons

  25. Thanks

More Related