1 / 91

Visual adaptation

Visual adaptation. Visual adaptation is a mechanism by which processing of visual information is continuously recalibrated according to the prevailing statistics of the input. What is adaptation- perceptual level Why is adaptation interesting and usefull? Correlates of adaptation- neural level

perdy
Download Presentation

Visual adaptation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Visual adaptation Visual adaptation is a mechanism by which processing of visual information is continuously recalibrated according to the prevailing statistics of the input

  2. What is adaptation- perceptual level • Why is adaptation interesting and usefull? • Correlates of adaptation- neural level • Eeg/erp • Single cell • fMRIa • Mechanisms of adaptation- theories

  3. Luminance

  4. Color

  5. Orientation

  6. Fixate the center...

  7. Vertical?

  8. Early examples of aftereffects • TAE Gibson, 1937 Köhler-Wallach, 1944

  9. Early examples of aftereffects • MAE Aristoteles, 1955 Addams, 1834

  10. MAE • Classic.mov

  11. Further aftereffects Adaptor Test Percept • Symmetry • Köhler-Wallach 1944 • Opponent shape • Regan Hamstra 1992 • Suzuki Cavanagh 1998 (aspect ratio,taper, curvature,skew, convexity)

  12. Face distortion aftereffect Webster and MacLin, 1999

  13. Fixate... X Webster and MacLin, 1999

  14. A vizuális tapasztalat típusai • A vizuális környezet statisztikáján alapuló • A vizuális információ relevanciájának statisztikáján alapuló

  15. A környezet statisztikáján alapuló tapasztalat A vizuális inputnak mindig többféle értelmezése lehetséges, nem lehet visszavetíteni egyértelműen a fizikai forrására, nem működik az inverz optika (Helmholtz)

  16. megoldás: Tapasztalat

  17. A környezet statisztikáján alapuló tapasztalat kérdés Mennyire képlékeny?

  18. A környezet statisztikáján alapuló tapasztalat Folyamatos frissítés

  19. A környezet statisztikáján alapuló tapasztalat Összetett tulajdonságok - identitás Átlag arc A környezet statisztikája alapján folyamatosan frissítve

  20. A környezet statisztikáján alapuló tapasztalat Rövid távú - adaptáció Minden tulajdonságra kimutatható Identitás Emóció Nem

  21. 2. Why to bother? • „the microelectrode of the psychologist (Frisby, 1979)„ • 1. If we can demonstrate adaptation to a specific property, then there must exist some neurons in the brainresponding selectively to that property.

  22. 2. Why to bother? • 2. The properties of the observed adaptations may reveal the processing steps of the adapted feature.

  23. 2.2. Properties of TAE • E.g.: TAE suggests adaptation to orientation. Where could it occur? • Orientation selective • Color selective • Spatial frequency selective • Transfers from one eye to the other • Transfers to even illusory contours • Retina? • Monocular v1 neurons? • Binocular v1 or v2 neurons? • Higher order neurons, e.g. IT?

  24. 2.2. Properties of FAEs • Size invariant • Position invariant • Insensitive to the rel. orientation of adaptor and test • Thus • face senisitive neurons (w large RF and showing the above invariances) might also adapt.

  25. 2. Why to bother? • 3. Contingent adaptations help to determine specificity and neural correlates • E.g.:TAE is color specific: • Celeste McCollough , 1965

  26. Color-contingentmotionaftereffect

  27. Color-contingentmotionaftereffect

  28. 3. Neural correlates of adaptation • Single cell • ERP • fMRIa

  29. 3. 1. Single cells • Repetition supression • Inferior temporal cortex Sobotka, Ringo, 1996

  30. 3. 1. Single cells • MT • Cca 30 % reduction Preferred Static Non-preferred VanWezel, Britten, 2002

  31. Neural effects of motion adaptation

  32. 3. 1. Single cells • Awake and anesthetised animals • Stimulus specific • Persists over many stimuli • Persists over gaps • Increases w/ more repetitions of the stimulus • Cca 50% of IT neurons show it

  33. 3. 2. EEG/MEG • The first repetition effect is after 200 ms (Henson, 2004) • Objects, familiarity, priming • Viewpoints • Decreased high fr. Power also >220

  34. ERP correlates of shape aftereffects N170 (face specific) Does it really occur only at 200 ms?

  35. inger megjelenése (decrease) ** ** Adaptation effect N170 ** ** (increase) N170 N170 does reflect adaptation

  36. Hands • (Kovács et al, 2005, 2006

  37. Methods • 5 deg peripheral presentation • Adaptor and test stimuli could overlap (OL) in the same HF or non-overlapping (non-OL) in opposite HFs.

  38. Electrophysiology • The N170 amplitude difference between OL and non-OL disappeares at short term adaptation

  39. 4. Mechanisms of adaptation Before adaptation After adaptation • PERCEPTUAL LEVEL Relative channel sensitivity Relative activity (answer) Percept

  40. 4. Mechanisms of adaptation • NEURAL LEVEL • Fatigue

  41. 4.1. Fatigue • Each neuron fires less for repeated stimulation • Mean population resp decreases • Repsonse pattern remains the same

  42. Investigation of the neural processes of adaptation and learning using fMRI

  43. Descartes, De l´Homme (1632) Tobozmirigy- ahol a test a lélekkel találkozik

More Related