1 / 122

Neutral Hydrogen Gas in Abell 370, a G alaxy C luster at z = 0.37

Neutral Hydrogen Gas in Abell 370, a G alaxy C luster at z = 0.37. Philip Lah. NCRA 17 th July 2008. Collaborators: Jayaram Chengalur (NCRA) Michael Pracy (ANU) Frank Briggs (ANU) Matthew Colless (AAO) Roberto De Propris (CTIO). Giant Metrewave Radio Telescope.

norah
Download Presentation

Neutral Hydrogen Gas in Abell 370, a G alaxy C luster at z = 0.37

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutral Hydrogen Gas in Abell 370, a Galaxy Cluster at z = 0.37 Philip Lah NCRA 17th July 2008

  2. Collaborators:Jayaram Chengalur (NCRA) Michael Pracy (ANU)Frank Briggs (ANU) Matthew Colless (AAO)Roberto De Propris (CTIO)

  3. Giant Metrewave Radio Telescope

  4. Giant Metrewave Radio Telescope

  5. Giant Metrewave Radio Telescope

  6. Giant Metrewave Radio Telescope

  7. Talk Outline Introduction • evolution in clusters & star formation rate density vs redshift • HI 21-cm emission & the HI coadding technique • review of current HI measurements at z > 0.1 Abell 370, a Galaxy Cluster at z = 0.37 • HI in Abell 370 • star formation in Abell 370 • two unusual radio continuum objects around Abell 370 Future Observations with SKA pathfinders • using ASKAP and WiggleZ • using MeerKAT and zCOSMOS

  8. Evolution in Galaxy Clusters

  9. Galaxy Cluster: Coma

  10. Butcher-Oemler Effect Butcher-Oemler Effect increasing fraction of blue galaxies in clusters with redshift nearby clusters neutral hydrogen gas deficient

  11. The Cosmic Star Formation Rate Density

  12. SFRD vs z Hopkins 2004

  13. molecular gas cloud (H2) star formation Neutral atomic hydrogen gas cloud (HI) HI Gas and Star Formation

  14. Neutral Atomic Hydrogen (HI)21-cm Emission

  15. Neutral atomic hydrogen creates 21 cm radiation electron proton

  16. Neutral atomic hydrogen creates 21 cm radiation

  17. Neutral atomic hydrogen creates 21 cm radiation

  18. Neutral atomic hydrogen creates 21 cm radiation

  19. Neutral atomic hydrogen creates 21 cm radiation photon

  20. Neutral atomic hydrogen creates 21 cm radiation

  21. HI 21cm Emission at High Redshift

  22. HI 21cm emission at z > 0.1 • single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) • single galaxy at z = 0.1887 VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) • two galaxy clusters at z = 0.188 and z = 0.206 WSRT 420 hours 42 galaxies detected  HI gas masses 5109 to 41010 M (Verheijen et al. 2007, ApJL, 668, L9) • galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6) 1010 M (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

  23. HI 21cm emission at z > 0.1 • single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) • single galaxy at z = 0.1887 VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) • two galaxy clusters at z = 0.188 and z = 0.206 WSRT 420 hours 42 galaxies detected  HI gas masses 5109 to 41010 M (Verheijen et al. 2007, ApJL, 668, L9) • galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6) 1010 M (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

  24. HI 21cm emission at z > 0.1 • single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) • single galaxy at z = 0.1887 VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) • two galaxy clusters at z = 0.188 and z = 0.206 WSRT 420 hours 42 galaxies detected  HI gas masses 5109 to 41010 M (Verheijen et al. 2007, ApJL, 668, L9) • galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6) 1010 M (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

  25. HI 21cm emission at z > 0.1 • single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) • single galaxy at z = 0.1887 VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) • two galaxy clusters at z = 0.188 and z = 0.206 WSRT 420 hours 42 galaxies detected  HI gas masses 5109 to 41010 M (Verheijen et al. 2007, ApJL, 668, L9) • galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6) 1010 M (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

  26. HI 21cm emission at z > 0.1 • our group using the GMRT measured the coadded HI signal from 121 star forming galaxies at z = 0.24 (look-back time ~3.8 Gyr)  GMRT ~48 hours on field • weighted average MHI = (2.26 ± 0.90) ×109 M (Lah et al. 2007, MNRAS, 376, 1357)

  27. Abell 370a Galaxy Cluster at z = 0.37

  28. Abell 370, a galaxy cluster at z = 0.37 large galaxy cluster of order same size as Coma optical imaging ANU 40 inch telescope spectroscopic follow-up with the AAT GMRT ~34 hours on cluster

  29. Abell 370 – R band images Thumbnails 10’’ sq 324 galaxies with useful redshifts (z~0.37) ordered by observed R band magnitudes

  30. Abell 370 galaxy cluster Abell 370 galaxy cluster 324 galaxies 105 blue (B-V  0.57) 219 red (B-V > 0.57)

  31. Abell 370 galaxy cluster Abell 370 galaxy cluster 3σ extent of X-ray gas R200 radius at which cluster 200 times denser than the general field

  32. redshift histogram 324 useful redshifts

  33. redshift histogram 324 useful redshifts GMRT sideband frequency limits

  34. Galaxy Sizes I want galaxies to be unresolved. For the galaxies at z = 0.24 I used an estimate of the HI size from the optical properties of spiral and irregular field galaxies and the smoothed radio data. Major Complication!! The Abell 370 galaxies are a mixture of early and late types in a variety of environments.

  35. Galaxy Sizes I want galaxies to be unresolved. For the galaxies at z = 0.24 I used an estimate of the HI size from the optical properties of spiral and irregular field galaxies and the smoothed radio data. Major Complication!! The Abell 370 galaxies are a mixture of early and late types in a variety of environments.

  36. HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 156 galaxies 168 galaxies 110 galaxies 214 galaxies

  37. HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 156 galaxies 168 galaxies 110 galaxies 214 galaxies

  38. HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 156 galaxies 168 galaxies 110 galaxies 214 galaxies

  39. HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 156 galaxies 168 galaxies 110 galaxies 214 galaxies

  40. HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 156 galaxies 168 galaxies 110 galaxies 214 galaxies

  41. HI all spectrum all Abell 370 galaxies neutral hydrogen gas measurement using 324 redshifts – large smoothing MHI = (6.6 ± 3.5) ×109 M

  42. HI Flux – All Galaxies

  43. HI blue outside x-ray gas blue galaxies outside of x-ray gas measurement of neutral hydrogen gas content using 94 redshifts – large smoothing MHI = (23.0 ± 7.7) ×109 M

  44. HI Flux – Blue Galaxies Outside X-ray Gas

  45. Comparisons with the Literature

  46. Average HI Mass Comparisons with Coma

  47. Abell 370 and Coma Comparison 110 galaxies 324 galaxies 214 galaxies

  48. Abell 370 and Coma Comparison 110 galaxies 324 galaxies 214 galaxies

  49. Abell 370 and Coma Comparison 110 galaxies 324 galaxies 214 galaxies

  50. HI Density Comparisons

More Related