530 likes | 641 Views
This document outlines the refined project description and block diagram for a PLC front-end design focusing on high-accuracy signal conditioning. Key components include ADC, microcontrollers, and various input types (0-10V, 4-20mA). The project timeline spans from initial training on May 21 through final presentation on August 12, covering essential tasks such as block diagrams, noise calculations, input scaling, and error estimation. The design supports thermistors, RTDs, and thermocouples for industrial temperature applications, achieving a tailored solution for precise measurements.
E N D
PLC front-end Design Review Curtis Mayberry 7-5-11
Block Diagram Stage 2 Stage 1 RTD TC Thermistor +/-10v, +/-5v 4-20mA Cost-Effective Signal Conditioning ADC Microcontroller High-Accuracy Super-Mini Dig Labview
The Plan • May 16: First Day • May 21: Project Definition & training (1 week) • June 5 - June 10: FAE conference in Tucson (1 week) • July 5: Block Diagrams, calculations (accuracy), simulations, Part selection & ordering, initial schematic (4 weeks) • July 14: PCB layout (2 weeks) • July 21: Basic LabView Coding & Testing preparation (1 week) • July 29: Initial lab results -Oven(~1 weeks) • August 3: Accuracy tests (Tucson?) • August 5: Final Report (2 days) • August 10: Preliminary Presentation (2 days) • August 12: Final Presentation (2 days) • August 18: Last Day (1 week)
Universal Inputs 0-10v and +/- 10v, 0-5v and +/- 5v, 4-20mA
Universal Voltage Input • 0-5v, 0-10v, +/- 5v and +/- 10v universal voltage input • Change resistance values to change input voltage levels • Second order RC filter with poles at 39 Hz and 3900Hz • Opamp to scale down input • 2.5v reference generated to scale input • Opa2333: Low offset voltage and drift, rail-to-rail input, dual opamp part
Noise Calculations: Voltage Reference • 2.5v Reference • REF5025: 625nVRMS • OPA333: 869 nVRMS • Filter KTC noise: 202.8nVRMS • Reference Output 10kΩ: 202.8 nVRMS • Total Noise: 1.108µVRMS • Current Noise: 26.34nVRMS (negligible)
Noise Calculations • Input Filter • 82nF filter KTC noise: 224 nVRMS • 820pF filter noise: 211.47 nVRMS • Total Noise: 308.5 nVRMS • Amplifier Noise: • Feedback Network (16.67kΩ): 828nVRMS • OPA333 noise: 869.5nVRMS • Total Noise: 1.2µVRMS
Noise Calculations: Total • ADC V+ input noise total: 1.503µVRMS • ADC V- input noise total:1.089uVRMS
Noise Calculations: Bringing it all together • ADC noise: 1.35 µVRMS • Noise at Apga =1 and 5 SPS
Resistor Mismatch Errors (Worse Case) • Resistor Options (worse case) • Set 1: 668.7 µV (0.1% resistors) • Set 2: 3.337 mV (0.1% resistors) • Set 2: 1.668 mV (0.05% resistors) • Set 2:666.8 µV (0.02% resistors) • Total: 1.797mV Set 1 Set 2
Resistor Tolerance Monte Carlo Simulation • Ran Monte Carlo Simulation using 0.1% resistors • 2.5 mV max error on output • Used an ideal op-amp to isolate the error source • Small variation between resistor tolerances
Error Estimation • ADC • 15µV offset • INL: 6 ppm • Gain Error: 0.02% • External Reference: 0.05%*2.024V = 1.024 mV • Total: 1.230 mV • Level shifting OPA2333 • Offset: 10 µV • Offset drift: 0.05 µV/oc • CMRR >106 dB • PSRR: 5 µV/V (max) • 2.5v Reference OPA2333 • Offset: 10 µV • Offset drift: 0.05 µV/oc (3µV over 25oC ± 60oC temperature range) • CMRR >106 dB • PSRR: 5 µV/V (max)
Error Estimation • Resistor Mismatch: 1.797 mV • REF5025 2.5v reference: 1.25 mV offset is cancelled out • Total: with no “interference”: 2.178 mV
Universal Current input • 4-20mA • Second order RC filter • Internal 2.048v reference • 221Ω shunt converts 4-20mA to 884mV-4.420V • OPA2333: Rail-to-Rail common mode input, low offset voltage and drift
Noise Analysis • OPA333 buffer noise: 869.5 nVRMS • Resistor Noise • 10kΩ: 202.8 nV • 16kΩ: 123 nV • 1.6kΩ: 31.1 nV • V+ Total Noise: 901.8 nVRMS • V- Total Noise: 1.089 µVRMS (Same as Vinput V-) • ADC noise: 1.35 µVRMS • Noise at Apga =1 and 5 SPS • Total noise: 11.729 µVPP
Error Estimation • ADC • 15µV offset • INL: 6 ppm • gain error: 0.02% • Noise error: 7.78 µVpp • External Reference: 1.024 mV • Shunt resistor tolerance: 20mA*221*.1% =4.42 mV • Level shifting OPA333 • Offset: 10 µV • Offset drift: 0.05 µV/oc • CMRR >106 dB • PSRR: 5 µV/V (min) • 2.5v Reference OPA333 • Offset: 10 µV • Offset drift: 0.05 µV/oc (3µV over 25oC ± 60oC temperature range) • CMRR >130 dB • PSRR: 2 µV/V • REF5025: 1.25mV • Total
Temperature Sensors Thermistor RTD Thermocouple Targeted industrial temperature range: -40oc to 85oc
Thermistor • Temperature proportional to resistance • Calibrated: 25oC and 85oC • NTC thermistor • 30kΩ ±1% @ 25oC • 2 Designs: • Single-ended • Bridged
Error Estimation • Resistor Mismatch: 374.81µV • Current Accuracy:0v • Ratio metric measurement • Thermistor Errors: 5.027 mV • Thermistor 25oC R-tolerance: 3.731mV (R±1%) • Beta Error: 3.37 mV (Beta±1%) • ADC Errors: • 15µV offset • INL: 6 ppm • gain error: 0.02% • External reference R: 2mV • Minimum 4.4 mV/oC • Total Error: 5.425mV (~1.23oC)
Error Estimation • Resistor Mismatch: 1.677mV (0.1% resistors) • Current Accuracy: 0v • Ratio metric reading (external ref) • Mismatch between current sources: • ±0.15% of FS (50 µV) = 75nV (negligible) • Thermistor Errors: 5.027 mV • Thermistor 25oC R-tolerance: 3.731mV (R±1%) • Beta Error: 3.37 mV (Beta±1%) • ADC Errors: 400.5µV • 15µV offset • INL: 6 ppm • gain error: 0.02% • Minimum 4.4 mV/oC • Total Error: 5.311mV
RTD • PT100, PT 1000 • Resistance proportional to temperature • Callendar-Van Dusen equation
Error Estimation • Class A RTD probe: ±0.15oC @ 0oC • ADC Errors: 400.5µV • 15µV offset • INL: 6 ppm • gain error: 0.02% • External reference tolerance: • Total Error: 2.040 mV
Thermocouple • Seebeck effect • Need to measure voltage across the element • Cold junction compensation: RTD close to the cold junction • PCB layout designed to keep the cold junction isothermal with the RTD • Types: K, J, T, E, N, R, S, B • Different materials, temperature ranges, TC • Example: K type: ~55µV/oC
Error Estimation • RTD Error: 2.040 mV • Thermocouple element error: Varies by type • Max element error (using K type): 1.1oC or 0.4%
Digital Interface SM-USB-DIG
Stage 2 Interface • Add MCU • Excluded from stage 1 (Rev. A) • MCU controls data converters • MCU communicates through SM-USB-DIG to computer • Adds extra capabilities
Power • Powered by a lab supply for prototyping • Banana plug input jack