1 / 26

Life’s Ultimate Problem…

Life’s Ultimate Problem…. Solved By…. Preliminary Design Review. Ahmad Alawadhi Eric Willuweit Kegan Grimes Kyle Chessman Sean Flodberg. Team Iron Chefs. Overview. Project Objective Background Approach Sub-system Implementation Member Roles Schedule Contingency Plan. Chessman.

nira
Download Presentation

Life’s Ultimate Problem…

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Life’s Ultimate Problem… Solved By…

  2. Preliminary Design Review Ahmad Alawadhi Eric Willuweit Kegan Grimes Kyle Chessman Sean Flodberg Team Iron Chefs

  3. Overview • Project Objective • Background • Approach • Sub-system Implementation • Member Roles • Schedule • Contingency Plan Chessman

  4. Project Objective • The goal of our project is to innovate the existing induction cooktop design with designated cooking locations and creating a “zone free” cooking range. Chessman

  5. Existing Cooktops • Cook tops use one large copper coil for each designated zone. • The copper coils create a magnetic field which induces eddy currents into the cookware above it. • These small currents heat the cookware through resistance of the material. Chessman

  6. Background • Cookware used must be a ferromagnetic material as the heat produced arises from Eddy Currents and the resistance caused by the skin layer of the metal. • Cookware must be flat-bottomed to maintain efficiency. Universal Symbol for induction cooking Chessman

  7. Approach • Utilize smaller copper coils in place of the large single coils. • Sense cookware’s location on the “zone-free” range. • Supply power to the coils that sense the cookware. Chessman

  8. Inputs and Outputs Alawadhi

  9. System Flow Diagram Alawadhi

  10. Sub-system Implementation • Systems • Indicator LEDs • Copper coils • Sensors Alawadhi

  11. Indicator LED Sub-system • LEDs indicate which coils are being supplied with power. • LEDs on temperature knobs lit with same color LED as the powered coils to display which coils the knobs correspond to. Willuweit

  12. Copper Coils Sub-system • Power supplied through the IGBTs • PWM signal generated from the MCU • Current transformer to feedback circuit • To optimize power transfer Willuweit

  13. Coil Construction • 3 inch flat copper coils • “Litz” copper wire • Small gauge insulated copper wire wound like a rope into a larger gauge wire for transporting high frequency currents • Take advantage of the “skin effect” used by transmission lines Willuweit

  14. Sensor Sub-system • Sensors change resistance when cookware is placed above them, causing a change in voltage. • High gain amplifier boosts the small signal to be noticed by the microcontroller. Willuweit

  15. Testing Potential Sensors • Photodiodes • Induction sensing • Infrared LEDs • Pressure sensing / Mapping Willuweit

  16. MCU - Microcontroller • Output at least seven PWM signals for our desired hexagon shaped design. • Read analog signals from the feedback circuit and adjust PWM output accordingly • Controls LEDs • MCU Requirements • PWM outputs for each coil • A/D converters for each coil feedback • Possible Choices: • ARM A series • ATXmega64 Willuweit

  17. Amplifier Circuits IGBT • Driver Amplifier • A class D Amplifier • Completely digital • Input from the PWM supplied from the MCU • Energy efficient • High Gain Amplifier • Op-amp with feedback circuit • Could also use a transistor combination circuit MCU PWM Signal Coils IGBT Grimes

  18. The Cookware, the Coil and the Capacitors (LC Tank) • The coils act as an inductor • When placed in series with capacitors, the two form an LC circuit also known as an “LC Tank” Grimes

  19. Feedback Circuit • Step-down transformer to supply 5V back to the MCU • Measures analog voltage signal from LC tank • MCU adjusts frequency of the PWM signal supplied to the IGBTs • Frequency will begin high (60kHz) and decrease down to potentially 19kHz • When the voltage amplitude peaks and is measured by the MCU, the frequency is maintained and the optimum power transfer has been reached Grimes

  20. Power • Supplied with 120/240 AC voltage from the wall outlet • Rectified to a DC voltage of 5V and 15V for the MCU and analog components • Transform the 15V to 325V DC to be supplied to the IGBTs • PWM signal controls the “on/off” state of the transistors creating an effective square wave AC signal. Grimes

  21. Power Transfer • The alternating square wave from the IGBTs creates an alternating magnetic field in the copper coils • The field is directed into the cookware, inducing eddy currents • Each individual coil will create a portion of the overall field necessary to heat the cookware • The number of coils needed varies with the cookware size Grimes

  22. Power Requirements • With a 22 cm diameter iron pot on top of range, the system will deliver approximately 2500 watts • At an input of 60Hz • Frequency supplied to the coils is 25kHz • At a 100 peak-to-peak current to the coils • This would be divided between seven coils accordingly Flodberg

  23. Feasibility • Materials • Availability/ Creation of copper coil windings • What kind of surface? • Existing surfaces are Ceran • Combination of glass and ceramic • Sensors sensitivity to temperature • Power • Ability of small coils to generate energy equivalent to the large coils Flodberg

  24. Member Roles Flodberg

  25. Timeline Flodberg

  26. QUESTIONS

More Related