430 likes | 563 Views
Explore Optimal Experiment Design (OED) and Minimum Volume Covering Ellipsoid (MVCE) in Kernel Ridge Regression by Tijl De Bie from K.U.Leuven. Learn about Ridge Regression, Least Squares, Regularization, and Novelty Detection.
E N D
Optimal Experiment Design (OED)for kernel ridge regressionandthe Minimum Volume Covering Ellipsoid (MVCE) Tijl De Bie (K.U.Leuven) Joint work with: Alexander Dolia John Shawe-Taylor Michael Titterington Chris Harris
The next hour… Tijl De Bie - KULeuven
Optimal experiment design? OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Optimal experiment design? OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Optimal experiment design? OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Notation OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Examples OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Examples OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Deliverables in this talk… OED? Notation Examples Deliverables… Tijl De Bie - KULeuven
Least squares regression (LS) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Least squares regression (LS) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for LS Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Ridge regression (RR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Ridge regression (RR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Ridge regression (RR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for RR Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for RR Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Optimal experiment design for RR Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel ridge regression (KRR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel ridge regression (KRR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel ridge regression (KRR) Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel D-OED Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
Kernel D-OED Least squares Ridge regression Kernel RR Tijl De Bie - KULeuven
OED: summary D-OED MVCE standard Least squares Ridge regression Kernel RR regularized kernel Tijl De Bie - KULeuven
Now over to novelty detection! Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Now over to novelty detection! Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Regularized MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Kernel MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Kernel MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Kernel MVCE Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
MVCE: summary Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
MVCE: summary D-OED MVCE standard regularized Novelty detection MVCE and duality Regularized MVCE Kernel MVCE kernel Tijl De Bie - KULeuven
MVCE: dealing with outliers Novelty detection MVCE and duality Regularized MVCE Kernel MVCE Tijl De Bie - KULeuven
Experiments – MVCE Linear Tijl De Bie - KULeuven
Experiments – MVCE Linear, centered Tijl De Bie - KULeuven
Experiments – MVCE RBF-kernel Tijl De Bie - KULeuven
Experiments – MVCE RBF-kernel Soft-margin Tijl De Bie - KULeuven
Experiments – D-OED Tijl De Bie - KULeuven
Experiments – D-OED Costs: Random vs Uniform vs OED (blue) 2-norm infinity norm 1-norm Tijl De Bie - KULeuven
Conclusions Tijl De Bie - KULeuven