
Distribution and Location of Genetic Effects for Dairy Traits
Questions of Interest • What model best fits our data? • Have we found any genes of large effect? • Can we use marker effects to locate autosomal recessives? • How do we handle the X chromosome? • How can we use marker effects to make better breeding decisions?
Experimental Design • Predict April 2008 daughter deviations from August 2003 PTA • Similar to Interbull trend test 3 • 3576 older Holstein bulls • 1759 younger bulls (total = 5335) • Results computed for 27 traits: 5 yield, 5 health, 16 conformation, and Net Merit (NM$)
Linear and Nonlinear Predictions • Linear model • Infinitesimal alleles model in which all loci have non-zero effects • Nonlinear models • Model A: infinitesimal alleles with a heavy-tailed prior • Model B: finite locus model with normally-distributed marker effects • Model AB: finite locus model with a heavy-tailed prior
R-square values comparing linear to nonlinear genomic predictions
Largest Effects • Fat %: largest effect on BTA 14 flanking the DGAT1 gene, with lesser effects on milk and fat yield • Protein %: large effects on BTA 6 flanking the ABCG2 gene • Net Merit: a marker on BTA 18 had the largest effect on NM$, in a region previously identified as having a large effect on fertility
Dystocia Complex • Markers on BTA 18 had the largest effects for several traits: • Dystocia and stillbirth: Sire and daughter calving ease and sire stillbirth • Conformation: rump width, stature, strength, and body depth • Efficiency: longevity and net merit • Large calves contribute to shorter PL and decreased NM$
Biology of the Dystocia Complex • The key marker is ss86324977 at 57,125,868 Mb on BTA 18 • Located in a cluster of CD33-related Siglec genes • Many Siglecs are involved in the leptin signaling system • Preliminary results also indicate an effect on gestation length
From whom did the bad allele come?Round Oak Rag Apple Elevation (7HO00058)
Locating Causative Mutations • Genomics may allow for faster identification of causative mutations • Identifies SNP in strong linkage disequilibrium with recessive loci • Tested using BLAD, CVM, and RED • Only a few dozen genotyped carriers are needed
SNP on X Chromosome • Each animal has two evaluations • Expected genetic merit of daughters • Expected genetic merit of sons • Difference is sum of effects on X • SD = 0.1 σG, smaller than expected • Correlation with sire’s daughter vs. son PTA difference was significant (P < 0.0001), regression close to 1.0
X, Y, Pseudo-autosomal SNP 35 SNP 35 SNP 0 SNP 487 SNP
Chromosomal EBV • Sum of marker effects for individual chromosomes • Individual chromosomal EBV sum to an animal’s genomic EBV • Chromosomal EBV are normally distributed in the absence of QTL • QTL can change the mean and SD of chromosomal EBV
Distribution of Chromosomal EBVsire calving ease on BTA 14 (no QTL)
Net Merit by ChromosomeFreddie (1HO08784) - highest Net Merit bull
Net Merit by ChromosomeDie-Hard (29HO08538) - maternal grandsire
Net Merit by ChromosomePlanet (7HO08081) – high Net Merit bull
Expected Relationship Matrix11HO9167 O-Style 1Calculated assuming that all grandparents are unrelated
Conclusions • A heavy-tailed model fits the data better than linear or finite loci models • Markers on BTA 18 had large effects on net merit, longevity, calving traits, and conformation • Marker effects may be useful for locating causative mutations for recessive alleles • Results validate quantitative genetic theory, notably the infinitessimal model
Acknowledgments • Genotyping and DNA extraction: • USDA Bovine Functional Genomics Lab, U. Missouri, U. Alberta, GeneSeek, Genetics & IVF Institute, Genetic Visions, and Illumina • Computing: • AIPL staff (Mel Tooker, Leigh Walton, Jay Megonigal) • Funding: • National Research Initiative grants • 2006-35205-16888, 2006-35205-16701 • Agriculture Research Service • Holstein, Jersey & Brown Swiss breed associations • Contributors to Cooperative Dairy DNA Repository (CDDR)