1 / 11

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain. In more detail. NDCG. NDCG components Gain → Cumulated Gain → Discounted Cumulated Gain → Normalized Discounted Cumulated Gain. Cumulative Gain. DCG based on t wo assumptions 높은 Relevance 를 가진 문서들은 낮은 Relevance 를 가진 문서보다 가치가 높다

maxime
Download Presentation

Normalized Discounted Cumulative Gain

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Normalized DiscountedCumulative Gain In more detail

  2. NDCG • NDCG components • Gain → Cumulated Gain → Discounted Cumulated Gain → Normalized Discounted Cumulated Gain

  3. Cumulative Gain • DCG based on two assumptions • 높은 Relevance를 가진 문서들은 낮은 Relevance를 가진 문서보다 가치가 높다 • 높은 Relevance의 문서들이 뒤쪽에 있다면, 정보이용자는 문서를 보지 못할 가능성이 높다 • Cumulative Gain • Predecessor of DCG • Sum of graded relevance of all results in a search result • Do not include rank information

  4. Cumulative Gain • 200개 문서의 relevance score를 0~3으로 한다면, (0: non-relevant ~ 3: highly relevant) Information Need에 대한 Gain은 다음과 같이 나타낼 수 있다. G’ = {3, 2, 3, 0, 0, 1, 2, 2, 3, 0, …} G’: gain • Cumulative gain은 Rank 1~i번까지 문서의 relevance score의 합 • CG[i] = G[1] if i=1 CG[i – 1] + G[i] otherwise • CG’ = {3, 5, 8, 8, 8, 9, 11, 13, 16, 16, …} CG’: cumulative gain ∴ CG’[7] = 11 Which is read as, at rank 7: cumulated gain is 11

  5. Discount Cumulated Gain • Rank가 뒤쪽으로 갈 수록 정보이용자가 볼 가능성이 낮음 • 이를 근거로 Relevance score에 반영, 뒤쪽 Rank에 해당할수록 Cumulative Gain값이 낮아지도록 조정 • 너무 급격하게 값이 낮아지지 않는 log를 기반으로 함 (e.g. division by rank) • DCG[i] = CG[i] (if i < b) DCG[i – 1]+G[i]/logbi (if i≥ b) • log base보다 i가 작을 때는 logarithm discount를 적용 안 함 • base수가 클수록 discount rate가 작아지며, 다른 의미로 searcher들이 base rank까지는 문서를 찾아 볼 것이라는 현실적인 가정을 생각해볼 수 있음 • log base가 2일 때,rank 7에서의 DCG는 8.66 DCG’ = {3, 5, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61, …}

  6. Discount Cumulated Gain • DCG[i] = CG[i] (if i < b) DCG[i – 1]+G[i]/logbi (if i≥ b) • Alternative formulation • 높은 Rank(=Result에서상위에 위치)의 문서들을 좀 더 강조

  7. Normalized DCG • Search result의 길이는 query에 따라 다름 • IR system마다 query에 대한 응답이 다르기 때문에 DCG는 IR system간의 측정 기준이 될 수 없음 • DCG에서 어떤 rank position에서든 Ideal Performance의 측정이 1이 되도록 하는 것 • Relative to the Ideal Measure • DCG vector가 V={v1, v2, v3,.. vk} 이고 Ideal Gain Vector가 I={i1, i2, i3,… ik} 라고 하면 Normalized DCG(V,I) = {v1/i1, v2/i2,… vk/ik}

  8. Ideal Gain Vector • 각각 k, l, m개의 문서가 Relevance level이 1, 2, 3이라고 가정한다(level range: 0~3, 3 is high) • 각 level의 문서마다 score를 매김 • 1…m까지의 score는 3 • m+1…m+l까지의 score는 2 • m+l+1…m+l+k까지의 score는 1이 된다. • Sample Ideal Vector I(for a query) • for k, l, m relevant documents at the relevance level 1~3 • I’ = { 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0,… } • Based on sample ideal gain vector I’, Ideal CG, DCG(b=2) also obtained • CG’I = { 3, 6, 9, 11, 13, 15, 16, 17, 18, 19, 19, 19, … } • DCG’I = { 3, 6, 7.89, 8.89, 9.75, 10.52, 10.88, 11.21, 11.53, 11.83, 11.83…}

  9. Normalized DCG • nCG’ = norm-vect(CG’, I’) = {1, 0.83, 0.89, 0.73, 0.62, 0.6, 0.69, 0.76, 0.89, 0.84.. } • Normalized DCG vector와 Normalized Ideal DCG vector의 Area 차이는 시스템의 quality를 나타낸다 • NDCG는 AUC과 같이 IR 시스템 간 성능을 비교하는 데 쓰일 수 있다. • e.g. Average of an NDCG up to the position k

  10. NDCG in Book • NDCG Definition shown in Book • In a query set Q, within top k results • Designed for situations of non-binary notions of relevance • Evaluated over some number k of top search results • R(j, d) is the relevance score, on document d for query j • Zk is normalization factor calculated to perfect ranking’s NDCG at k is 1 • Finally Results are averaged between queries in a query set Q

  11. NDCG in Book • NDCG Example(for 1 query) • nDCG’6 = DCG’6/IDCG’6 = 7.99 / 10.52 = 0.7595

More Related