1 / 5

CÁLCULO RADIACIÓN SOLAR GLOBAL SUPERFICIES INCLINADAS

CÁLCULO RADIACIÓN SOLAR GLOBAL SUPERFICIES INCLINADAS. G (0). D(0) y B(0). Albedo R ( ,). Directa B( ,). Difusa D ( ,). G ( ,) = B ( ,) + D ( ,) + R ( ,). Método General de Cálculo I. Objetivo: Obtener G ( , ) conocida G(0). Correlaciones. K T y K D. Relaciones

lucius
Download Presentation

CÁLCULO RADIACIÓN SOLAR GLOBAL SUPERFICIES INCLINADAS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CÁLCULO RADIACIÓN SOLAR GLOBAL SUPERFICIES INCLINADAS Leocadio Hontoria 1 de 5

  2. G (0) D(0) y B(0) Albedo R (,) Directa B(,) Difusa D (,) G (,) = B (,) + D (,) + R (,) Método General de Cálculo I • Objetivo: Obtener G (, ) conocida G(0) Correlaciones. KT y KD Relaciones trigonométricas Expresión empírica Modelos Leocadio Hontoria 2 de 5

  3. Paso 1. Descomposición de G(0) en B(0) y D(0) • KT = G(0) / Bo(0) • KD = f(KT) • D(0) = KD ·G(0) • B(0) = G(0) - D(0) • Paso 2. Obtención de B(, ) a partir de B(0) • B(, ) = B(0) · cos(s) / cos (zs) • Paso 3. Obtención de D(, ) a partir de D(0) • D(, ) = D(0) (1+cos ) / 2 • Paso 4. Obtención de R(, ) • R(, ) = G(0)·(1-cos )/2 Método General de Cálculo II • Objetivo: Obtener G (, ) conocida G(0) Leocadio Hontoria 3 de 5

  4. Algoritmo Particular I Dato de Partida: 12 valores de Gdm(0). Radiación Global Media Mensual • Paso 1a. Descomposición de Gdm(0) en Bdm(0) y Ddm(0) • KTm = Gdm(0) / Bodm(0) • KDm = 1 - 1.13· KTm • Ddm(0) = KDm ·Gdm(0) • Bdm(0) = Gdm(0) - Ddm(0) • RESULTADO: Bd(0) Dd(0) y Gd(0) • Paso 1b. Paso de Bd(0) y Dd(0) a Bh(0) y Dh(0) • a = 0.4090 - 0.5016 ·sen (s + 1.047) • b = 0.6609 + 0.4767 ·sen (s + 1.047) • rd = /24·(cos  - cos s) / (s ·cos s - sen s) • rg = /24 · (a + b cos )·rd • Dh(0) = Dd(0)·rd • Gh(0) = Gd(0)·rg • Bh(0) = Gh(0) - Dh(0) • RESULTADO: Bh(0) Dh(0) y Gh(0) Leocadio Hontoria 4 de 5

  5. Paso 2. Paso de Bh(0) a Bh(,) • Bh(, ) = Bh(0) · cos(s) / cos (zs) • cos(s) = sen  sen  cos  - • sen  cos  sen  cos + • cos  cos  cos  cos  + • cos  sen  sen  cos  cos  + • cos  sen  sen  sen  • cos (zs) = sen  sen  + cos  cos  cos  • Paso 3. Paso de Dh(0) a Dh(,) • Dh(, ) = D(0) (1+cos ) / 2 • MODELO ISOTRÓPICO • Paso 4. Paso de Dh(0) a Dh(,) • Rh(, ) = Gh(0)· (1-cos )· / 2 •  =0.1, 0.2 Factor de reflectividad Algoritmo Particular II Leocadio Hontoria 5 de 5

More Related