1 / 6

MAE 3241: AERODYNAMICS AND FLIGHT MECHANICS

MAE 3241: AERODYNAMICS AND FLIGHT MECHANICS. Views of Motion: Eulerian and Lagrangian Conservation Equation Summary January 19, 2011 Mechanical and Aerospace Engineering Department Florida Institute of Technology D. R. Kirk. KINEMATIC PROPERTIES: TWO ‘VIEWS’ OF MOTION.

Download Presentation

MAE 3241: AERODYNAMICS AND FLIGHT MECHANICS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MAE 3241: AERODYNAMICS ANDFLIGHT MECHANICS Views of Motion: Eulerian and Lagrangian Conservation Equation Summary January 19, 2011 Mechanical and Aerospace Engineering Department Florida Institute of Technology D. R. Kirk

  2. KINEMATIC PROPERTIES: TWO ‘VIEWS’ OF MOTION • Lagrangian Description • Follow individual particle trajectories • Choice in solid mechanics • Control mass analyses • Mass, momentum, and energy usually formulated for particles or systems of fixed identity • ex., F=d/dt(mV) is Lagrangian in nature • Eulerian Description • Study field as a function of position and time; not follow any specific particle paths • Usually choice in fluid mechanics • Control volume analyses • Eulerian velocity vector field: • Knowing scalars u, v, w as f(x,y,z,t) is a solution

  3. CONSERVATION OF MASS • This is a single scalar equation • Velocity doted with normal unit vector results in a scalar • 1st Term: Rate of change of mass inside CV • If steady d/dt( ) = 0 • Velocity, density, etc. at any point in space do not change with time, but may vary from point to point • 2nd Term: Rate of convection of mass into and out of CV through bounding surface, S • 3rd Term (=0): Production or source terms Relative to CS Inertial

  4. INTEGRAL FORM VS. DIFFERENTIAL FORM • Integral form of mass conservation • Apply Divergence (Gauss’) Theorem • Transform both terms to volume integrals • Results in continuity equation in the form of a partial differential equation • Applies to a fixed point in the flow • Only assumption is that fluid is a continuum • Steady vs. unsteady • Viscous vs. inviscid • Compressible vs. incompressible

  5. SUMMARY: INCOMPRESSIBLE VS. CONSTANT DENSITY • Two equivalent statements of conservation of mass in differential form • In an incompressible flow • Says particles are constant volume, but not necessarily constant shape • Density of a fluid particle does not change as it moves through the flow field • INCOMPRESSIBLE: Density may change within the flow field but may not change along a particle path • CONSTANT DENSITY: Density is the same everywhere in the flow field

  6. MOMENTUM EQUATION: NEWTONS 2nd LAW Inertial Relative to CS • This is a vector equation in 3 directions • 1st Term: Rate of change of momentum inside CV or Total (vector sum) of the momentum of all parts of the CV at any one instant of time • If steady d/dt( ) = 0 • Velocity, density, etc. at any point in space do not change with time, but may vary from point to point • 2nd Term: Rate of convection of momentum into and out of CV through bounding surface, S or Net rate of flow of momentum out of the control surface (outflow minus inflow) • 3rd Term: • Notice that sign on pressure, pressure always acts inward • Shear stress tensor, t, drag • Body forces, gravity, are volumetric phenomena • External forces, for example reaction force on an engine test stand • Application of a set of forces to a control volume has two possible consequences • Changing the total momentum instantaneously contained within the control volume, and/or • Changing the net flow rate of momentum leaving the control volume

More Related