slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Le coniche PowerPoint Presentation
Download Presentation
Le coniche

Loading in 2 Seconds...

play fullscreen
1 / 24

Le coniche - PowerPoint PPT Presentation


  • 234 Views
  • Uploaded on

Le coniche. Storia e applicazioni . Di Anna Brambilla 3°E. Keplero. Galileo. Apollonio di Perga. Newton. Menecmo. Le coniche . Applicazioni moderne. Cartesio. Applicazioni nell’arte. Pascal. Fermat. Ellisse.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Le coniche' - kevyn


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

Le coniche

Storia e applicazioni

Di Anna Brambilla 3°E

slide2

Keplero

Galileo

Apollonio di Perga

Newton

Menecmo

Le coniche

Applicazioni moderne

Cartesio

Applicazioni nell’arte

Pascal

Fermat

slide3

Ellisse

  • L'ellisse è il luogo dei punti del piano le cui distanze dai due fuochi hanno somma costante, uguale a 2a, dove a rappresenta il semiasse maggiore.

L’ombra dell’ellisse proiettata con un pallone e una torcia

Equazione dell’ellisse:

slide4

Circonferenza

Scelti un punto C del piano ed un numero reale positivo r, si definisce circonferenza di centro C e raggio r il luogo geometrico dei punti del piano aventi distanza da C uguale a r.

Equazione della circonferenza:

L’ombra della circonferenza proiettata con un pallone e una torcia.

slide5

Parabola

La parabola è il luogo dei punti del piano le cui distanze da un fuoco e dalla relativa direttrice hanno rapporto costante uguale ad e (l’eccentricità della parabola).

Equazione della parabola:

y = ax2 + bx + c

L’ombra della parabola proiettata con un pallone e una torcia

slide6

Iperbole

L'iperbole è il luogo dei punti le cui distanze dai due fuochi hanno differenza costante in valore assoluto, uguale a 2a (dove a indica il semiasse traverso).

Equazione dell’iperbole:

L’ombra dell’iperbole proiettata con un pallone e una torcia.

slide7

Menecmo

380 a. C. circa Asia Minore- 320 a. C. circa

Menecmo è famoso per aver scopeto le coniche.

Le scoprì casualmente cercando di risolvere il problema della duplicazione del cubo.

Questo problema è uno di classici problemi dell’antichità.Si tratta di trovare il lato di un cubo che abbia il volume doppio rispetto a quello di un cubo dato.

slide8

Sezioni coniche

Menecmo fu il primo a mostrare che ellisse, parabola ed iperbole si potevano ottenere mediante la sezione di un cono con un piano. Menecmo utilizzava però un piano perpendicolare alla generatrice del cono, facendo variare la generatrice del cono stessa.

Se l’angolo al vertice del cono è ottusangolo, si ottiene l'amblitome (iperbole).

slide9

Se il triangolo per l’asse è isoscele e acutangolo, si ottiene l'oxitome (ellisse).

Se il triangolo per l’asse è rettangolo isoscele, si ottiene l'ortotome (parabola).

slide10

Apollonio di Perga

262 a C Perga - 190 a C Alessandria

Apollonio è passato alla storia come Grande Geometra. La sua opera più famosa sono Le coniche. È anche conosciuto per il cerchio di Apollonio.

slide11

Cono a doppia falda

Apollonio dimostrò che non era necessario prendere sezioni perpendicolari a un elemento del cono, che da un unico cono si potevano ottenere tutte le sezioni coniche. Inoltre affermò che il cono non doveva essere necessariamente retto e sostituì il cono con una falda di Menecmo, con il cono a doppia falda.

slide12

Le coniche:

La prima edizione delle coniche è stata scritta a Pergamo. Era composta da 8 libri. I primi 4 contengono informazioni sulle coniche che erano già note a Euclide. I libri dal 5 al 7 introducono nuovi aspetti e sono giunti a noi attraverso gli arabi. L’ultimo è stato perduto.

Apollonio, nelle Coniche, introdusse i termini:

Ellisse = mancanza;

parabola = mettere accanto; iperbole = andare oltre.

slide13

Applicazione delle coniche all’arte: i romani

I Romani usavano le coniche, in particolare l’ellisse, per le piante degli anfiteatri.

L’anfiteatro di Pompei, il più antico anfiteatro in pietra ha la pianta a forma di ellisse.

L’anfiteatro Flavio, noto col nome di Colosseo, ha anch’esso la pianta a forma di ellisse.

slide14

Applicazione delle coniche all’arte: il rinascimento

Le coniche acquistano grande importanza nell’arte, in particolare nel periodo del rinascimento e del barocco. La linea curva prevale sulla linea retta. Nel Barocco ha particolare importanza l’uso dell’ellisse.

Pianta ellittica della chiesa di S. Andrea al Quirinale

slide15

Applicazione delle coniche all’arte: scultura e pittura

Modigliani

Donna con cravatta nera

Il volto della scultura è contenuto in un’ellisse.

Il volto della donna dipinta è contornato da una parabola

Domenico Rambelli

Testa di MityaCiarlantini

slide16

Keplero

27 Dicembre 1571 a Weil der Stadt - 15 Novembre 1630 a Regensburg

Frequentò l’università di Tubinga dove studiò principalmente teologia e filosofia, ma anche astronomia e matematica.  E' famoso soprattutto per le cosiddette leggi di Keplero ed è grazie a queste che viene considerato il fondatore della fisica astronomica.

Keplero formulò per le coniche un principio di continuità.

Per lui i diversi tipi di coniche formavano un unico insieme, senza interruzioni.

slide17

Le leggi di Keplero

I Legge: i pianeti si muovono in semplici orbite ellittiche delle quali il Sole occupa uno dei due fuochi.

II Legge: La linea retta che congiunge il pianeta con il sole forma  aree uguali in tempi uguali, mentre il pianeta descrive la sua orbita.

III Legge: Detti T1 e T2 i periodi necessari a due pianeti per compiere le loro orbite ed R1 e R2  le rispettive distanze medie fra i pianeti e il Sole, T1²/T2² = R1³/ R2³.  

L’orbita di Marte secondo Keplero.

Le prime due si trovano nell'opera Astronomia Nova  (Praga, 1609). La terza apparve nell'opera Armonices mundi(1619).

slide18

Galileo Galilei

1564 - 1642

Galileo intraprese importanti studi sui vari tipi di moto. Si soffermò in particolare sul moto parabolico e circolare.

Galileo dimostrò che la traiettoria del moto di un proiettile è una parabola.

slide19

Isaac Newton

1642 - 1727

Newton intraprese numerosi studi sul moto orbitale dei pianeti. In particolare dimostrò che la forza necessaria a far percorrere a un corpo un’orbita ellittica deve variare come l’inverso del quadrato della distanza.

Newton costruì un telescopio usando specchi parabolici e specchi ellittici (sostituì poi lo specchio ellittico con uno iperbolico).

slide20

Cartesio

(René Descartes)

1596 - 1650

Cercando di risolvere il problema di Pappo nell’opera Geometrie, Cartesio scoprì l’equazione generica di una conica passante per l’origine.

L’equazione generica di una conica passante per l’origine :

Problema di Pappo con 4 rette.

slide21

Pierre de Fermat

1601 - 1665

Fermat sapeva rappresentare curve matematiche tramite equazioni prima di Cartesio. Dimostrò che l’equazione generica di una conica è un equazione di secondo grado in x e y.

Fermat si occupò del problema delle tangenti ad una curva data e lo risolse in modo diverso da Cartesio.

problema delle tangenti

slide22

Blaise Pascal

1623 - 1662

Scrive il “Saggio sulle sezioni coniche” in cui formulò il teorema di Pascal.

Questo afferma che i sei vertici di un esagramma giacciono su una conica se e solo se i punti d’intersezione delle tre coppie di lati opposti giacciono su una stessa retta.

Teorema di Pascal

slide23

Applicazioni delle coniche

Specchi sferici

Il fuoco F rappresenta la sorgente luminosa. I raggi riflessi escono parallelamente e, dopo aver colpito la superficie, si concentrano nel fuoco.

Antenna parabolica

Gli specchi sferici sono poi sostituiti da specchi a sezione parabolica.

slide24

Sitografia:

www.db.unibo.it

www.dti.unimi.it

www.unife.it

www.itg-rondani.it

www.electroyou.it

www.museo.unimo.it

www.wikipedia.org

www.atuttascuola.it

www.liceartcs.it

www.itis-molinari.eu