1 / 19

Future in Particle Physics!

Future in Particle Physics!. ECFA: Future of Accelerator-Based Particle Physics in Europe HEPAP: Long Range Planning for U.S. High-Energy Physics ACFA: coming up soon?. F. Linde, 14-December-2001, Amsterdam. Input to ECFA report. Laboratories: L. Maiani: “CERN: views for the future”

Download Presentation

Future in Particle Physics!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Future in Particle Physics! ECFA: Future of Accelerator-Based Particle Physics in Europe HEPAP: Long Range Planning for U.S. High-Energy Physics ACFA: coming up soon? F. Linde, 14-December-2001, Amsterdam

  2. Input to ECFA report • Laboratories: • L. Maiani: “CERN: views for the future” • A. Wagner: “Views on the future of DESY” • J. Bagger: “HEPAP sub-panel on long range planning for U.S. High energy physics” • F. Gilman: “The U.S. high energy physics advisory panel white paper” • A. Skrinsky: “Russian HEP activity: status and perspectives” • S. Komamiya: “Report on ACFA activities” • Projects: • F. Gianotti: “Physics perspectives with the LHC within Standard Model” • P. Sphicas: “Physics perspectives with the LHC: SuSy and other physics beyond SM” • K. Hubner: “New acceleration methods and plans for high intensity proton machines” • R. Klanner: “Future perspectives for ep physics” • D. Miller: “Physics potential and concrete perspectives for <1 TeV linear colliders” • P. Zerwas: “Muti-TeV lepton colliders: the physics potential” • J.P. Delahaye: “CLIC, a two beam multi-TeV e linear collider” • A. de Roeck: “CLIC, a compact linear collider: experimentation and physics potential” • M. Tigner: “Perspectives and experimental environment of a muon collider” • P. Janot: “What physics at muon colliders” • K. Peach: “Neutrino factories”

  3. Physics challenges • “recent” discoveries: • three families (LEP) • t-quark discovered (Tevatron) • indirect Higgs mass (LEP/Tevatron) • -oscillations (Kamiokande) • CP violation in B system (BaBar/Belle) • many questions, e.g.: • matter  anti-matter? • dark matter? • three families? • generation of mass? • proton decay? • charge quantization? • unification?

  4. Progress within the Standard Model • Improvements: • masses: mW, mt, … • couplings: s, G, … • other: sin2w, CKM, g-2, ... • Outstanding issues: • Higgs mechanism • quark-gluon plasma • CP violation quark sector • neutrino sector

  5. Progress beyond the Standard Model • Approaches: • Rare/forbidden decays • New particles • New interactions • Unification • Unknown: look into the sky!

  6. Experimental opportunities

  7. Future “G$” projects • Hadron-hadron (CERN & Fermilab) • LHC upgrades: • Luminosity upgrade 1034 1035 cm-2s-1 “easy” (you want it?) • Energy upgrade difficult (we might want it!) • Very large hadron colliders: VLHC • Lepton-lepton (CERN, DESY, US, Japan) • ee linear colliders: TESLA, NLC, JLC, CLIC •  collider • Intense neutrino beams (CERN, FermiLab, Japan) • ,,e,e

  8. Very large hadron collider • VLHC-1 • VLHC-2 • s (TeV) • 30-40 • 175 • B-field (T) • 2 • 10-12 • Lumi (cm-2s-1) • 1034 • 1035 • Fermilab • VLHC phased project • (240 km circumference tunnel) • Issue: cost, cost and cost dipole magnets interesting (transmission line) • Physics • The unknown, new, exciting! • Continuation of LHC • But also clear you only embark on this well after the LHC has cleared the TeV energy range

  9. Intense neutrino beams ( collider?) • SPL: Ep 2-15 GeV, 1016 p/s • target: p   • -decay:    • -cooling: reduce E, E50 GeV • -decay:  decay in “ring” • -collider: future music pee ee Japan, CERN & FermiLab • Physics • “Near” (<1 km, high rate) • structure functions • CKM matrix • new physics • “Far” (102-104 km, low rate) • oscillations • CP neutrino beam neutrino beam

  10.  collider • Everything ee linear collider offers with as advantages: • Far less Beamstrahlung (negligible) • Far better calibration (E5 keV, energy spread & polarization) • Much larger couplings to Higgs bosons (/ee4104) •  Higgs lineshape!

  11. Linear ee collider: cartoons SLAC Japan DESY

  12. Linear ee collider: real work

  13. Lepton colliders: ee • SLC • TESLA • NLC/JLC • CLIC • s (TeV) • 0.1 • 0.1-0.8 • 0.5-1.0 • 0.5-5.0 • Length (km) • 5 • 33 • 25 • 30-40 • Gradient (MV/m) • (10?) • 25-35 • 50 • 150-170 • Lumi (1034 cm-2s-1) • 0.0003 • 3-5 • 2-3 • 10 • xy(nm2) • 10001000 • 5005 • 2002.5 • 401 • Beamstrahlung (%) • ? • 3-4 • 5-10 • 30-40 • ee • Higgs • Supersymmetry • lots more (QCD, …) • X-ray FEL option: • biology • material • e and  options

  14. Making choices! • $$$$$$$$$$$$$$$$$$$$$$ • HEP creativity exceeds available finances  must be selective • allow orginal, excellent, new, ... proposals  be flexible • limit (expensive) duplications  operate globally • sufficient R&D before technology decision  be economical • realistic time schedules! • accelerator  non-accelerator • links to astro-physics, cosmology and nuclear physics • “plan” for the unexpected • fill “no-physics” between large accelerator projects • Fairly well covered already • B-physics: HeraB/Tevatron - BaBar/Belle - LHCb • Heavy-ion physics: RHIC - ALICE

  15. ECFA recommendations HEPAP addition Importance of non-accelerator based experiments • Make the LHC a success i.e. get it running timely! • Exploit ongoing facilities optimally in pre-LHC era • Stimulate accelerator R&D @ home institutes • Next project: a sub-TeV (s  400 GeV) ee linear collider • (irrespective of the findings of the LHC i.e. justification exists today) • Coordinated R&D effort to study -storage ring • (SPL  intense -beam) • VLHC, CLIC & -collider: far future i.e. beyond 2020 • (coordinate R&D efforts)

  16. Linear ee colliders • c.m. energy s: • facts: • “Giga Z”: smZ90 GeV • “top factory”: s2mt350 GeV • speculation: • “SM Higgs factory”: smH+mZ350 GeV • new physics: super-symmetry, extra dimensions, …..  s  400 GeV • pp  ee colliders: • complementary (SppS  LEP  Tevatron) • Z, W discovery  Z factory • mt prediction  top discovery • mH prediction  Higgs discovery? • pp: discovery physics ( Nobel exp.) • ee: precision physics ( Nobel th.)

  17. ee linear collider: physics • Precision Higgs study (mH, spin, H, HHH,Hff, …) • Super-symmetry spectroscopy (threshold scans) • Precision measurements thereby probing higher energies • Anything new and unexpected (unlikely to escape LHC though)

  18. ee linear collider: Higgs ZHqqbb ZHl+l-bb Higgs decay width HZ (fb) HHZ (fb) Higgs spin Higgs selfcoupling e+e-  HZ e+e-  HHZ mH s Higgs signals

  19. Prospects (limit duplications: BTeV, … !) NIKHEF • Resolve CERN/LHC situation • management & finances • realise machine & experiments • do the experiments: • find Higgs, supersymmetry, quark-gluon plasma, CKM & CP • Get the e+e- linear collider on track • sort out technology (cold  warm) • agree upon one site (FermiLab?) & get it funded! • do the experiment(s):  2013 • better insight into …. (Higgs, supersymmetry, higher energy scales) ? • Develop -superbeam/factory facility • SPL: intense p source • -cooling R&D • ? ? • Exciting non-accelerator program • proton decay, neutrino, satellite-based & gravitational wave experiments

More Related