Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Clarifier Calculations PowerPoint Presentation
Download Presentation
Clarifier Calculations

Clarifier Calculations

256 Views Download Presentation
Download Presentation

Clarifier Calculations

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Clarifier Calculations Prepared By Michigan Department of Environmental Quality Operator Training and Certification Unit

  2. Clarifier Calculations Hydraulic Loading Solids Loading

  3. Clarifier Loading Calculations Tank Volume, MG X 24 Flow into Tank, MGD Detention Time (DT) = Flow, gallons/day = Surface Overflow Rate (SOR) Surface Area, ft2 Flow, gallons/day Weir Overflow Rate (WOR) = Length of Weir, ft Solids, lbs/day Surface Area, ft2 Solids Loading =

  4. But First

  5. Area and Volume Calculations

  6. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Example 1: If a tank is 10 ft long and5 ft wide, what is the surfacearea? SA, ft2 = 10 ft X 5 ft = 50 ft2

  7. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Example 2: If a tank is 10 ft 6 inches long and5 ft 9 inches wide, what is the surface area in sq. ft.? NOT SA, ft2 = 10.6 ft X 5.9 ft

  8. Converting Inches to Feet 6 inches 12 in/ft = 0.5 ft 6 inches = So: 10 ft 6 inches = 10.5 ft 9 inches 12 in/ft = 0.75 ft 9 inches = So: 5 ft 9 inches = 5.75 ft

  9. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Example 2: If a tank is 10 ft 6 inches long and5 ft 9 inches wide, what is the surface area in sq. ft.? SA, ft2 = 10.5 ft X 5.75 ft = 60.4 ft2

  10. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Work Calculations on Separate Paper Answers Given on Next Slides Practice 1: If a clarifier is 25 ftlong and9 ftwide, what is the surface area in sq. ft.? Practice 2: If a clarifier is 22 ft 3 inches long and7 ft 7 inches wide, what is the surface area in sq. ft.?

  11. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Practice 1: If a clarifier is 25 ftlong and9 ftwide, what is the surface area in sq. ft.? SA, ft2 = 25 ft X 9 ft = 225 ft2

  12. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Practice 2: If a clarifier is 22 ft 3 inches long and7 ft 7 inches wide, what is the surface area in sq. ft.?

  13. Converting Inches to Feet 3 inches 12 in/ft = 0.25 ft 3 inches = So: 22 ft 6 inches = 22.25 ft 7 inches 12 in/ft = 0.58 ft 7 inches = So: 7 ft 7 inches = 7.58 ft

  14. Surface Area Calculations Rectangles Surface Area, ft2 = Length, ft X Width, ft Practice 2: If a clarifier is 22 ft 3 inches long and7 ft 7 inches wide, what is the surface area in sq. ft.? SA, ft2 = 22.25 ft X 7.58 ft = 60.4 ft2

  15. Diameter Diameter 2 Radius = Radius Surface Area Calculations Circles Diameter: The distance across a circle, going through the center. Radius: The distance from the center a circle to the perimeter.

  16. Circumference Diameter Radius Surface Area Calculations Circles Circumference = distance around circle

  17. Diameter Radius Surface Area Calculations Circles pie

  18. Diameter Radius Surface Area Calculations Circles pi =  Circumference Diameter = = 3.14 for any circle

  19. Diameter Radius Surface Area Calculations Circles Surface Area = r2 = 3.14 X radius X radius

  20. X D2 = 3.14 22 3.14 4 A = X D2 Surface Area Calculations Circles Surface Area = r2 = 3.14 X r2 OR A = 3.14 X (D/2)2 = 3.14 X D2 4 OR = 0.785 X D2 Any on the Three Formulas Can Be Used

  21. Diameter Radius Surface Area Calculations Circles Surface Area = r2 Example 1: If a tank has a radius of 15 feet, what is the surfacearea? S A = r2 = 3.14 X 15 ft. X 15 ft. = 707 ft2

  22. Diameter Radius Surface Area Calculations Circles Surface Area = r2 Example 2: If a tank has a diameter of 25 feet, what is the surfacearea? S A = r2 = 3.14 X 12.5 ft. X 12.5 ft. = 491 ft2

  23. Diameter Radius Surface Area Calculations Circles Surface Area = r2 Work Calculations on Separate Paper Answers Given on Next Slides Practice 1: If a tank has a diameter of 50.5 feet, what is the surfacearea? Practice 2: If a tank has a diameter of 50 feet 7 inches, what is the surfacearea?

  24. Diameter Radius Surface Area Calculations Circles Surface Area = r2 Practice 1: If a tank has a diameter of 50.5 feet, what is the surfacearea? S A = r2 = 3.14 X 25.25 ft. X 25.25 ft. = 2002 ft2

  25. Diameter Radius Surface Area Calculations Circles Surface Area = r2 Practice 2: If a tank has a diameter of 50 feet 7 inches, what is the surfacearea? 7 inches 12 in/ft = 0.58 ft 7 inches = 50 feet 8 inches = 50.58 ft Radius = 50.58 ft ÷ 2 = 25.29 ft

  26. Diameter Radius Surface Area Calculations Circles Surface Area = r2 Practice 2: If a tank has a diameter of 50 feet 7 inches, what is the surfacearea? S A = r2 = 3.14 X 25.29 ft. X 25.29 ft. = 2008 ft2

  27. Volume Calculations Volume – Three D

  28. Volume Calculations Volume – Three Dimensions Depth Width Length

  29. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Example 1: If a tank is 10 feet long, 5 feet wide, and 5 feet deep, what is the volume in cubic feet? Vol. = 10 ft X 5 ft X 5 ft = 250 ft3

  30. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Example 2: If a tank is 20 ft. long, 7 ft. wide, and 5.5 ft. deep, what is the volume in cubic feet? Vol. = 20 ft X 7 ft X 5.5 ft = 770 ft3

  31. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Example 3: If a tank is 25 ft. long, 9 ft. 3 inches wide, and 7.5 ft. deep, what is the volume in gallons? Vol. = 25 ft X 9.25 ft X 7.5 ft = 1734 ft3

  32. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Example 3: If a tank is 25 ft. long, 9 ft. 3 inches wide, and 7.5 ft. deep, what is the volume in gallons? There are 7.48 gallons in one cubic foot OR 7.48 gal/ft3

  33. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Example 3: If a tank is 25 ft. long, 9 ft. 3 inches wide, and 7.5 ft. deep, what is the volume in gallons? Vol. = 25 ft X 9.25 ft X 7.5 ft = 1734 ft3 1734ft3 7.48 gal/ft3 = 12,970 gallons X

  34. Volume Calculations Rectangular Tanks Work Calculations on Separate Paper Answers Given on Next Slides Practice 1: If a tank is 21 feet long, 9 feet wide, and 7 feet deep, what is the volume in cubic feet? Practice 2: If a tank is 22 ft. long, 9 ft. wide, and 7.5 ft. deep, what is the volume in cubic feet? Practice 3: If a tank is 35 ft. long, 12 ft. 3 inches wide, and 9.5 ft. deep, what is the volume in gallons?

  35. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Practice 1: If a tank is 21 feet long, 9 feet wide, and 7 feet deep, what is the volume in cubic feet? Vol. = 21 ft X 9 ft X 7 ft = 1323 ft3

  36. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Practice 2: If a tank is 22 ft. long, 9 ft. wide, and 7.5 ft. deep, what is the volume in cubic feet? Vol. = 22 ft X 9 ft X 7.5 ft = 1485 ft3

  37. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Practice 3: If a tank is 35 ft. long, 12 ft. 3 inches wide, and 9.5 ft. deep, what is the volume in gallons? Vol. = 35 ft X 12.25 ft X 9.5 ft = 4073 ft3

  38. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Practice 3: If a tank is 35 ft. long, 12 ft. 3 inches wide, and 9.5 ft. deep, what is the volume in gallons? There are 7.48 gallons in one cubic foot OR 7.48 gal/ft3

  39. Volume Calculations Rectangular Tanks Volume = Length X Width X Height (or Depth) Practice 3: If a tank is 35 ft. long, 12 ft. 3 inches wide, and 9.5 ft. deep, what is the volume in gallons? Vol. = 35 ft X 12.25 ft X 9.5 ft = 4073 ft3 4073ft3 7.48 gal/ft3 = 30,466 gallons X

  40. Volume Calculations Round (Cylinder) Tanks Volume – Three Dimensions V = π r2h = 3.14 r = Radius of circle h = Height (or Depth)

  41. Volume Calculations Round (Cylinder) Tanks Example 1 Find the Volume in cubic feet of a tank having a radius of 10 feet and a depth of 8 feet. V = r2h = 3.14 X 10 ft X 10 ft X 8 ft = 3.14 X 800 ft3 = 2512 ft3

  42. Volume Calculations Round (Cylinder) Tanks Example 2 Find the Volume in cubic feet of a tank having a diameter of 30 feet and a depth of 8 feet. V = r2h = 3.14 X 15 ft X 15 ft X 8 ft = 3.14 X 1800 ft3 = 5652 ft3

  43. Volume Calculations Round (Cylinder) Tanks Example 3 Find the Volume in gallons of a tank having a diameter of 50 feet and a depth of 9 feet. V = r2h = 3.14 X 25 ft X 25 ft X 9 ft = 17,662.5 ft3 X 7.48 gal/ft3 = 132,116 gallons

  44. Volume Calculations Round (Cylinder) Tanks Volume – Three Dimensions = 3.14 r = Radius of circle h = Height (or Depth)

  45. Volume Calculations Round (Cylinder) Tanks Work Calculations on Separate Paper Answers Given on Next Slides Practice 1 Find the Volume in cubic feet of a tank having a radius of 22 feet and a depth of 10 feet. Practice 2 Find the Volume in cubic feet of a tank having a diameter of 28 feet and a depth of 7.5 feet. Practice 3 Find the Volume in gallons of a tank having a diameter of 48 feet and a depth of 7 feet.

  46. Volume Calculations Round (Cylinder) Tanks Practice 1 Find the Volume in cubic feet of a tank having a radius of 22 feet and a depth of 10 feet. V = r2h = 3.14 X 22 ft X 22 ft X 10 ft = 3.14 X 4840 ft3 = 15,198 ft3

  47. Volume Calculations Round (Cylinder) Tanks Practice 2 Find the Volume in cubic feet of a tank having a diameter of 28 feet and a depth of 7.5 feet. V = r2h = 3.14 X 14 ft X 14 ft X 7.5 ft = 3.14 X 1470 ft3 = 4616 ft3

  48. Volume Calculations Round (Cylinder) Tanks Practice 3 Find the Volume in gallons of a tank having a diameter of 48 feet and a depth of 7 feet. V = r2h = 3.14 X 24 ft X 24 ft X 7 ft = 12,660 ft3 X 7.48 gal/ft3 = 94,700 gallons

  49. Volume Calculations What about a Round Tank with a Cone Bottom ?

  50. r2h2 3 Vcone = 1/3 r2h or Volume Calculations Cylinder with Cone Bottom h1 Vcylinder = r2h1 h2 Vtotal = Vcylinder + Vcone