380 likes | 457 Views
Understand the local geometry of polypeptides, secondary structure elements, and atom numbering. Learn about chirality and practical manifestation through optical dichroism. Dive into Cartesian and internal coordinates for molecular systems.
E N D
Local geometry of polypeptidechainsElements of secondarystructure (turns)
Chirality Enantiomers Phenomenological manifestation of chiraliy: optical dichroism (rotation of the plane of polarized light).
Representation of geometry of molecular systems • Cartesiancoordinates • describeabsolute geometry of a system, • versatilewith MD/minimizing energy, • need a moleculargraphics program to visualize. • Internalcoordinates • describelocal geometry of an atom wrt a selectedreferenceframe, • withsomeexperience, local geometry can be imaginedwithout a moleculargraphics software, • mightcauseproblemswhendoing MD/minimizing energy (curvilinearspace).
Cartesian coordinate system z Atom x (Å) y (Å) z (Å) C(1) 0.000000 0.000000 0.000000 O(2) 0.000000 0.000000 1.400000 H(3) 1.026719 0.000000 -0.363000 H(4) -0.513360 -0.889165 -0.363000 H(5) -0.513360 0.889165 -0.363000 H(6) 0.447834 0.775672 1.716667 zH(6) H(6) O(2) H(4) C(1) yH(6) xH(6) x H(5) y H(3)
Internal coordinate system i dijaijkbijkl j k l C(1) O(2) 1.40000 * 1 H(3) 1.08900 * 109.47100 * 1 2 H(4) 1.08900 * 109.47100 * 120.00000 * 1 2 3 H(5) 1.08900 * 109.47100 * -120.00000 * 1 2 3 H(6) 0.95000 * 109.47100 * 180.00000 * 2 1 5 H(6) O(2) H(4) C(1) H(5) H(3)
Dihedral (torsional) angle The C-O-H plane is rotated counterclockwise about the C-O bond from the H-C-O plane.
Bond length calculation zj zi xi yi xj xj
Bond angle calculation j aijk i k
Dihedral angle calculation i bijkl k j l
Calculation of Cartesian coordinates in a local reference frame from internal coordinates H(5) z H(6) d26 C(1) a426 H(3) b3426 O(2) y x H(4)
Need to bring the coordinates to the global coordinate system
Polymer chains qi+2 qi+2 wi+1 wi+1 qi+1 i+1 i+1 di+1 di+1 i i wi pi-1 di ai wi-1 wi-1 qi-1 qi-1 i-1 i-1 di-1 di-1 qi i-2 i-2
For regular polymers (when there are „blocks” inside such as in the right picture, pi is a full translation vector and TiRi is a full transformation matrix).
Ring closure 3 4 q3 w4 2 d2 n-3 1 a21n d1n a1 n n-1 wn n n-2 dn qn n-1 N. Go and H.A. Scheraga, Macromolecules, 3, 178-187 (1970)
Peptide bond geometry Hybrid of two canonical structures 60% 40%
Peptide bond: planarity • The partially double character of the peptide bond results in • planarity of peptide groups • their relatively large dipole moment
Side chain conformations: the c angles c1 c2 c3 c1=0
Dihedrals with which to describe polypeptide geometry side chain main chain
Peptide group: cis-trans isomerization Skan z wykresem energii
Because of peptide group planarity, main chain conformation is effectively defined by the f and y angles.
The dihedral angles with which to describe the geometry of disulfide bridges
Some andpairs are not allowed due to steric overlap (e.g, ==0o)
Conformations of a terminally-blocked amino-acid residue E Zimmerman, Pottle, Nemethy, Scheraga, Macromolecules, 10, 1-9 (1977) C7eq C7ax
Energy minima of therminally-blocked alanine with the ECEPP/2 force field
g- and b-turns g-turn (fi+1=-79o, yi+1=69o) b-turns
Types of b-turns in proteins Hutchinson and Thornton, Protein Sci., 3, 2207-2216 (1994)