1 / 17

Indirect Dark Matter Search with AMS

Cosmic Ray Astrophysics with AMS02 – PS1 D.Haas. Indirect Dark Matter Search with AMS. T. Siedenburg for the AMS Collaboration. 6 emes Rencontres du Vietnam, Hanoi 9-Aug-2006. Cosmic Puzzle. Clues in CR Spectra ?. Precision Cosmology

Download Presentation

Indirect Dark Matter Search with AMS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cosmic Ray Astrophysics with AMS02 – PS1 D.Haas Indirect Dark Matter Search with AMS T. Siedenburg for the AMS Collaboration 6emes Rencontres du Vietnam, Hanoi 9-Aug-2006

  2. Cosmic Puzzle Clues in CR Spectra ? Precision Cosmology WMAP CMB Power SpectrumSDSS 3D Matter SpectrumHubble SN-Ia Redshift 1/s/GeV 1/d/GeV T. Siedenburg AMS Dark-Matter

  3. Detecting a SUSY Neutralino as Dark-Matter Candidate e Structure: Cold Dark-Matter WIMP: Weakly Interacting Massive Particle Direct Detection current local density SD/SI Visible Matter Dark Matter Halo Indirect Detection: Neutralino-Annihilation Solar/terrestrial neutrinos GC solar lifetime average g AMS02 Dark-Matter Detection Spectrum/Line from GC Charged Anti-Particles 1GeV-1TeV: 5 kpc Sphere T. Siedenburg AMS Dark-Matter

  4. e+e+ + e– Signal propagation and Background Galactic Models and Solar Modulation Nuclear abundance: B, C, 10Be, 9Be, ... Standard particles: e, pSecondary prod.: e, p Tracking + charge / isotope separation Signal from WIMP annihilation Particle Generators & DM Density Contributions to : e, p, g, D Proton supression by 106 Electron supression by 104 Gamma reconstruction (energy / angle) Dark Matter Detection Requirements T. Siedenburg AMS Dark-Matter

  5. STS-912.-12.JUN 1998 AMS01 Precursor Flight Permanent Magnet 0.15 Tm26 Si-Strip Tracker Planes4 Sc-Panel TOF Trigger LayersAerogel Čerenkov + Veto ACC 108 Events in 10 days AMS01 T. Siedenburg AMS Dark-Matter

  6. Proton Suppression:Bremsstrahlung ~ 1/m2 q1 q2 • 3 track events with converted gmiddle track from primary e • Efficient track reconstruction • Reject high dE/dX |Q|>1 events • Keep backtraced extraterrestrial events • Background e– with wrong charge p  p p+p– p  p p0  p e+e– (g) • Reconstruct invariant masses at radiation and conversion vertex AMS01 Positron Selection above 3.5 GeV Primary Positron TOF 1 Photon TOF 2 @ @ TOF 3 TOF 4 SecondaryPositron SecondaryElectron T. Siedenburg AMS Dark-Matter

  7. Proton MC Selected AMS01 Positrons Background from p and e MCReweight for geomagnetic cutoff spectral indexScale to measured p and e flux Geomagnetic Cutoff 118 Selected 24.9 Protons 6.5 Electrons Spectral Index T. Siedenburg AMS Dark-Matter

  8. Acceptance and Livetime Corrections for Flux Calculation dF / dE = N / (A ∙ T ∙ DE) For each 4sec Flight Period* Get Shuttle Coordinates * Backtrace particle in 9 cosq, 8 j, 8 p bins * Sum DAQ livetime for extraterrestrial tracksSeparately up/down e+/e– 5000 CPU Days “Upward” Shuttle Floor Trapped Particle Geometrical Acceptance A Average Livetime T T. Siedenburg AMS Dark-Matter

  9. e+e+ + e– AMS01 Positron Fraction AMS01 Lepton Fluxes J.Olzem, H.Gast J.Olzem, H.Gast Cancellation of systematics in fraction( Detector acceptance / Livetime ) T. Siedenburg AMS Dark-Matter

  10. Tracking and Particle ID 3m 6700 kg Improve with AMS02 TRD Xe/CO2Straws p+rej. >102 1-300 GeV 0.5m2sr 3.5m TOF Trigger (2up+2low) st: = 120ps: b dE/dX: Z Superconducting Magnet 0.8 Tm2 2.5t superfluid He Silicon Strip Tracker 6m2 p up to 1TV and Z(dE/dX) RICH Aerogel/NaF 3sSep. A~26 1-12 GeV + Z ECAL 3D lead/scint-fibre h rej. >103 1-300 GeV 0.05m2sr 3 years above atmosphere T. Siedenburg AMS Dark-Matter

  11. TRD Positron Proton Separation dE/dX from TrackerRICH (and TOF) Charge / Isotope Separation A/Z = 2 GSI Beamtest 1 Layer 0 20 Layer TRD Beamtest bfrom RICH (1-12 GeV/n) Momentum from Trackerwith Supercond. Magnet Mass for Isotope Sep. T. Siedenburg AMS Dark-Matter

  12. 0.4 X0 ECAL Conversion AMS02 GAMMA DETECTION ECAL 16.4 X018 x/y samplings Effective Area / cm2 Energy and angle 1 GeV – 1 TeV h/e Separation: 103 shower-shape Acceptance: 0.05m2sr E / GeV Angular Resolution / deg Energy Resolution / % Star Tracker: 30“ E / GeV E / GeV T. Siedenburg AMS Dark-Matter

  13. Determine Propagation Model Parameter Errors from Variation with AMS02 MC Error Estimation Secondary/Primary: Traversered MatterUnstable/Stable: Confinement Time AMS02 Nuclei and Isotopes 105 C 104 B > 100 GeV/n in 3 years 10510Be 0.5-10 GeV in 3 years B/C 10Be / 9Be Agl NaF AMS02 MC TOF E / GeV/n E / GeV/n T. Siedenburg AMS Dark-Matter

  14. 4x106 AMS02 Positrons from 5-300 GeV e+e+ + e– Proton Rejection 106 from TRD 1000-100 ECAL 100-1000 E/p 10 Improve precision of SM background predictionto enhance sensitivityfor subtle deviations within the same dataset e.g. WIMP annihilations… T. Siedenburg AMS Dark-Matter

  15. Test of mSUGRA parameter space with precise positron fraction Focus Point Rapid Funnels Constraints: gm-2 mhWCDMbsg BSm+m–mt=175.2GeVmb=4.2GeVas=0.1187 Fixed: A0 = 0 sign(m) = +1 Free: m0 m1/2 tanb E / GeV E / GeV BF 6.1e3 BF 1.7e5 Bulk Point Co-Annihilation BF 1.2e5 BF 3.2e3 E / GeV E / GeV T. Siedenburg AMS Dark-Matter

  16. AMS02 Antiprotons and Gammas Electron Rejection 104 from TRD + ECAL + E/p 1 GeV EGRET Excess and de Boer DM ring interpretation hard to confirmCuspier Halo-Profile: flux x10 106 Antiprotons 0.5-100 GeV Sensitivity: 7x10-9 / cm2 / s Antiprotons sensitive to solar modulation Ro = 8.0 kpc, r0 = 0.3 GeV/cm3, a = 20 kpc LIS + Geomagn.cutoff p A.Jacholskowska et al.Phys.Rev.D 74 023518 (2006) from galactic center m0= 60 GeVm1/2= 250 GeVA0=0 tanb=10 m>0 BF 2.0e1 (3 years) T. Siedenburg AMS Dark-Matter

  17. Conclusion AMS Dark-Matter Detection AMS01: Successful flight, HEAT Positron excess not excluded AMS02: Complete, large acceptance, 3 years above atmosphere Tracking – 3 TV RICH 1 – 12 GeV Calorimetry 1 GeV – 1 TeV TRD 1 – 300 GeV High statistics e, p and AZ to tune cosmic models e, p, and g spectra for combined dark-matter fit AMS02 is on schedule for flight in 2009 Shuttle isback to flight T. Siedenburg AMS Dark-Matter

More Related