1 / 26

Health impact assessment of urban water: Bioaerosols

Health impact assessment of urban water: Bioaerosols. Helena Sales Ortells 10 th February 2011 TU Delft. Introduction. Bioaerosols: aerosol of biological origin or activity that can cause health disorders after inhalation/ingestion. Origin Farms Water Humans (sneeze, cough, skin) etc.

janeeva
Download Presentation

Health impact assessment of urban water: Bioaerosols

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Health impact assessment of urban water:Bioaerosols Helena Sales Ortells 10th February 2011 TU Delft

  2. Introduction • Bioaerosols: aerosol of biological origin or activity that can cause health disorders after inhalation/ingestion. • Origin • Farms • Water • Humans (sneeze, cough, skin) • etc

  3. Risk of Q fever through drinking water

  4. LITERATURE REVIEW

  5. Bioaerosol samplers

  6. Factors that influence sampling • Sampler: • Collection efficiency: d50, jet velocity, jet-to plate distance, reaerosolization • Biological preservation: jet velocity and jet-to-plate distance (embedding and impaction stress), media, desiccation stress, surface tension stress. • Aerosols nature and size • Microorganism: • Hardiness: Hardy (e.g. Bacillus) vs Sensitive (e.g. E.coli) • Size (dae>d50) • Shape, charge, nature… • Environmental / sampling conditions: • Temperature • RH • P • Insolation • Wind speed and direction • Sampling time

  7. Some information from the literature review • Virus and small bacteria • Liquid impingers have low collection efficiencies, except for Personal Sampler • Better MAS-100. • Impactors and filters give good results for hardy microorganisms. • Liquid impingers perform better for sensitive species. • Evaporation of fluid (long sampling times). Solutions: • Periodically refilling of the sampling fluid • Use of BioSampler with non-evaporating liquids • Reaerosolization of particles. Solutions: • Use of the Personal Sampler • Use of the BioSampler (with high viscosity liquids)

  8. METHODOLOGICAL STUDY OF AEROSOL SAMPLERS

  9. Objectives • Select the best sampler for each target microorganism (higher recovery rate and survival) • Select the best analytical quantitative method • Understand the characteristics that affect bioaerosols sampling and survival • Reduce the uncertainty of the field studies

  10. Microorganisms • Resistant bacteria: B. subtilis • Spores: 0.7 / 1.7 μm • Cells: 0.86 μm (dae) • Sensitive bacteria • P. fluorescens: 0.6 μm (dae) • E. coli: 0.8 μm (dae) • Virus: MS2 bacteriophage • 27-28nm (~Norovirus)

  11. Aerosols generators: SLAG vs Collison 0.2-2mL/min 5-30 L/min 0.5 or 2 μm

  12. SLAG VS Collison (Mainelis et al., 2005)

  13. Aerosol generator (SLAG)

  14. Samplers for study • SKC BioSampler: • Lower impaction stress (better performance for sensitive species) • Evaporation and reaerosolization can be decreased • Allows use and comparison of different liquid media • Personal Sampler: • Good performance for virus and small bacteria • MAS-100: • To compare with a solid impactor • Good performance for virus and small bacteria • Filters (gelatin and PTFE or PC): • To compare with impactors • For FM tests

  15. Aerosol chamber

  16. Experimental Set-up

  17. Efficiency of samplers • Physical collection efficiency (PCE): capacity of the sample for collecting aerosols: • Inlet efficiency • Wall losses • Collection stage efficiency (d50, reaerosolization…) • Biological efficiency (BE): survival • Impaction stress • Dehydration…

  18. Experimental Set-up: efficiency PCE: Total counts BE: Viable counts

  19. FIELD EXPERIMENTS

  20. Objectives • Study the airborne microorganisms survival and dispersal at several distances downwind from a (water) source • Obtain information for exposure assessment • Validate literature models on aerosol dispersion

  21. Procedure • Continuous emission source • Sampler(s) selected on the previous stage • Several distances downwind from source • Blanco upwind • Several heights • Petri dishes to estimate dry deposition • Monitor parameters (Ta, RH, insolation, wind…)

  22. Literature (I) • Agranovski, I. E., V. Agranovski, T. Reponen, K. Willeke and S. A. Grinshpun (2002). Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmospheric Environment36: 889-898. • Agranovski, I. E., A. S. Safatov, A. I. Borodulin, O. V. Pyankov, V. A. Petrishchenko, A. N. Sergeev, A. A. Sergeev, V. Agranovski and S. A. Grinshpun (2005). New personal sampler for viable airborne viruses: feasibility study. Journal of Aerosol Science36(5-6): 609-617. • Agranovski, V., Z. Ristovski, M. Hargreaves, P. J. Blackall and L. Morawska (2003). Real-time measurement of bacterial aerosols with the UVAPS: performance evaluation. Journal of Aerosol Science34(3): 301-317. • An, H. R., G. Mainelis and L. White (2006). Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmospheric Environment40(40): 7924-7939. • Borodulin, A. I., B. M. Desyatkov, N. A. Lapteva, A. N. Sergeev and I. E. Agranovski (2006). Personal sampler for monitoring of viable viruses; modelling of outdoor sampling conditions. Atmospheric Environment40(35): 6687-6695.

  23. Literature (II) • Brandi, G., M. Sisti and G. Amagliani (2000). Evaluation of the environmental impact of microbial aerosols generated by wastewater treatment plants utilizing different aeration systems. Journal of Applied Microbiology88(5): 845-852. • Brennan-Calanan, R. M. and M. A. Gallo (2008). Bacterial air pollution at a wastewater treatment plant. BIOS79(4): 150-159. • Brooks, J., B. Tanner, K. Josephson, C. Gerba, C. Haas and I. Pepper (2005). A national study on the residential impact of biological aerosols from the land application of biosolids. Journal of Applied Microbiology99(2): 310-322. • Chang, C.-W., F.-C. Chou and P.-Y. Hung Evaluation of bioaerosol sampling techniques for Legionella pneumophila coupled with culture assay and quantitative PCR. Journal of Aerosol ScienceIn Press, Accepted Manuscript. • Deloge-Abarkan, M., T.-L. Ha, E. Robine, D. Zmirou-Naviera and L. Mathieu (2007). Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH). Journal of Environmental Monitoring9: 91-97. • Henningson, E. W. and M. S. Ahlberg (1994). Evaluation of microbiological aerosol samplers: A review. Journal of Aerosol Science25(8): 1459-1492. • Ho, J., M. Spence and S. Duncan (2005). An approach towards characterizing a reference sampler for culturable biological particle measurement. Journal of Aerosol Science36(5-6): 557-573.

  24. Literature (III) • Hogan, C. J., E. M. Kettleson, M. H. Lee, B. Ramaswami, L. T. Angenent and P. Biswas (2005). Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology99(6): 1422-1434. • Jensen, P. A., W. F. Todd, G. N. Davis and P. V. Scarpino (1992). EVALUATION OF EIGHT BIOAEROSOL SAMPLERS CHALLENGED WITH AEROSOLS OF FREE BACTERIA. American Industrial Hygiene Association Journal53(10): 660-667. • Lin, X., T. A. Reponen, K. Willeke, S. A. Grinshpun, K. K. Foarde and D. S. Ensor (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment33(26): 4291-4298. • Mainelis, G., D. Berry, H. Reoun An, M. Yao, K. DeVoe, D. E. Fennell and R. Jaeger (2005). Design and performance of a single-pass bubbling bioaerosol generator. Atmospheric Environment39(19): 3521-3533. • Medema, G., B. Wullings, P.Roeleveld and D. v. d. Kooij (2004). Risk assessment of Legionella and enteric pathogens in sewage treatment works. Water Science and Technology4(2): 125-132. • O’Toole, J., M. Keywood, M. Sinclair and K. Leder (2009). Risk in the mist? Deriving data to quantify microbial health risks associated with aerosol generation by water-efficient devices during typical domestic water-using activities. Water Science and Technology60(11): 2913-2920.

  25. Literature (IV) • Páez-Rubio, T. and J. Peccia (2006). The emission rate, biological characterization and transport of aerosols emitted during the disk incorporation of class B biosolids. Proceedings of the Water Environment Federation. • Park, J.-M., J. C. Rock, L. Wang, Y.-C. Seo, A. Bhatnagar and S. Kim (2009). Performance evaluation of six different aerosol samplers in a particulate matter generation chamber. Atmospheric Environment43(2): 280-289. • Spaan, S., L. A. M. Smit, W. Eduard, L. Larsson, H. J. J. M. Arts, I. M. Wouters and D. J. J. Heederik (2008). Endotoxin Exposure in Sewage Treatment Workers: Investigation of Exposure Variability and Comparison of Analytical Techniques. Annals of Agricultural and Environmental Medicine15: 251-261. • Tham, K. W. and M. S. Zuraimi (2005). Size relationship between airborne viable bacteria and particles in a controlled indoor environment study. Indoor Air15: 48-57. • Tseng, C.-C. and C.-S. Li (2005). Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science36(5-6): 593-607. • Van Droogenbroeck, C., M. Van Risseghem, L. Braeckman and D. Vanrompay (2009). Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air. Veterinary Microbiology135(1-2): 31-37. • Yao, M. and G. Mainelis (2006). Effect of physical and biological parameters on enumeration of bioaerosols by portable microbial impactors. Journal of Aerosol Science37(11): 1467-1483.

More Related