1 / 52

All-optical Packet Router Employing PPM Header Processing

All-optical Packet Router Employing PPM Header Processing. Prof. Z. Ghassemlooy Optical Communications Research Group http://soe.unn.ac.uk/ocr/ School of Computing, Engineering and Information Sciences Northumbria University Newcastle, UK. Presentation Outline. Introduction

jam
Download Presentation

All-optical Packet Router Employing PPM Header Processing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. All-optical Packet Router Employing PPM Header Processing Prof. Z. Ghassemlooy Optical Communications Research Group http://soe.unn.ac.uk/ocr/ School of Computing, Engineering and Information Sciences Northumbria University Newcastle, UK

  2. Presentation Outline • Introduction • Original Contributions and Research Outcomes • Future Work Z Ghassemlooy

  3. CEIS - Research Groups Northumbria Communications Research Laboratories Advanced Signal Processing Network Security Non-Linear Control Microwave and Microwave Holography + Active Antenna Optical Communications Research Group (OCRG) Z Ghassemlooy

  4. OCRG –People • Staff • Prof. Z Ghassemlooy • J Allen • Dr R Binns • Dr K Busawon • Dr W. P. Ng • Visiting Academics • Prof. V Ahmadi, Univ. Of TarbiateModaress , Tehran, Iran • Dr M. H. Aly, 2Arab Academy for Scie. and Tech. and Maritime Transport, Egypt • Prof. J.P. Barbot, France • Prof. I. Darwazeh, Univ. College London • Prof. H. Döring, HochschuleMittweida Univ. of Applied Scie. (Germany) • Prof. E. Leitgeb, Graz Univ. of Techn. (Austria) • PhD Students: M. Amiri, A. Chaman-Motlagh, M. F. Chiang, M. A. Jarajreh, R. Kharel, S. Y Lebbe, W. Loedhammacakra, Q. Lu, V. Nwanafio, E. K. Ogah, W. O. Popoola, S. Rajbhandari, A. Shalaby, X. Tang • MSc: A Burton, D Bell, G Aggarwal, M Ljaz, O Anozie, W Leong , S Satkunam Z Ghassemlooy 4 WBU, India 2009

  5. OCRG –Agilent Photonic Lab

  6. [bit/s] 1P 100T 10T 1T 100G 10G 1G 100M Traffic demand forecast (NEC–2001) Capacity increase : 2~4 times a year Bit cost decrease : 1/2 time a year Total Data Voice 1995 2000 2005 2010 Optical Communications • 1st generation optical networks: packet routing and switching are mainly carried out using high-speed electronic devices. • However, as the transmission rate continues to increase, electronically processing data potentially becomes a bottleneck at an intermediate node along the network. • Solution: All-optical processing & switching Z Ghassemlooy

  7. Photonics - Applications • Photonics in communications: expanding and scaling Metropolitan Home access Long-Haul Board -> Inter-Chip -> Intra-Chip • Photonics: diffusing into other application sectors Health(“bio-photonics”) Environment sensing Security imaging Z Ghassemlooy

  8. Networks Topology – An Overview Z Ghassemlooy

  9. O-E-O Router Architecture http://www.cisco.com/en/US/products/ps5763/index.html • Up to 92 Tbit/s • Optical inputs but electronic switching • Very large power consumption Dr N. Calabretta (TU/e, Holland) Z Ghassemlooy

  10. Parallel electronic switch Why Photonic Technology 622 Mb/s -> 160 Gb/s 160 Gb/s -> 622 Mb/s Elect. Mux Elect. DeMux DeMux 1 1 Receivers Modulators Mux Clock recovery lasers All-optical Demultiplexer Photonic switch Multiplexer • High speed and parallel all-optical processing of the packets. • Photonic integration potentially allows a reduction of volume, power consumption, scalability, latency and costs. Dr N. Calabretta (TU/e, Holland)

  11. Header Processing! All-optical Packet Switching • Objectives • High Bit Rate • High Throughput Z Ghassemlooy

  12. All-optical Cross-connect node • Functionality 1 x N packet switch • All-optical label recognition • Low latency • Scalable  photonic integration • All-optical label rewriting • Optical routing • Low power penalty  Node cascadability multiplexer demultiplexer 1 1 2 2 N N 1 x N packet switches Buffering and synchronisation Target: routing and label rewriting in a single device Z Ghassemlooy

  13. Research Road Maps Z Ghassemlooy

  14. O/E Processing E/O Packet Routing –Header Processing 1. Optical vs. Electrical in High-speed Routing H Routing table 0100 Matching! Optical domain Electrical domain High Speed >> 40 Gbit/s IC: Large scale, cheap, memory Complexity, costly, no memory Speed limitation < 40 Gbit/s Integration Light “Frozen”? “Opt. Capacitors”? All-Optical Processing Z Ghassemlooy

  15. 2. Address Correlation Packet header is compared with all entries of a routing table for checking the matching Packet Routing –Header Processing N2N bit-wise AND operations Robust All-Optical Processing Our solution: Pulse-Position-Modulation based Header Processing (PPM-HP) Minimise number of AND operations Reduce routing table entries Z Ghassemlooy

  16. One Frame Tf = 4Tb Tb LSB Binary 1 0 0 1 1001 One Frame Tf = 24Ts 9 Ts PPM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Packet Routing –Header Processing 3. What is Pulse Position Modulation? Tb – bit duration, Ts – slot duration Z Ghassemlooy

  17. Port 1 1M Port 2 (M = 3 ports) Port 3 … 0 1 2 3 4 5 6 7 2N-1 … 0 1 2 3 4 5 6 7 2N-1 … 0 1 2 3 4 5 6 7 2N-1 Packet Routing –Header Processing 4. Pulse Position Routing Table (PPRT) Conventional routing table 2N entries PPM Pulse-position routing table Z Ghassemlooy

  18. PL PL PL PL A A A A Clk Clk Clk Clk PPMA … Matched pulse Clk A Packet Routing –Header Processing All-optical Switch 5. PPM-HP Router Port 1 OSW1 Port 2 … OSW2 … Port M OSWM Header Extraction PPM Add. Conversion CP 1 CP 2 PPRT CP M OSWC &1 Entry 1 … Clock Extraction OSWC Entry 2 &2 Synchronization … … … Entry M OSWC &M PPM-HP Z Ghassemlooy

  19. MEMS*(Lucent Tech.) Bubbles*(Agilent) Packet Routing –Optical Switches Cat.1 Large scale (> 1616) Slow response (s-ms) Non-optically controlled Cat.2 Small scale (22) Fast response (fs-ps) Full-optically controlled SMZ*(Japan) • Crosstalk TOAD*(Princeton) • Contrast * Sources: Internet articles & websites Z Ghassemlooy

  20. 90 90 0 0 0 90 90 0 90 90 Terahertz Optical Asymmetric Demultiplexer (TOAD) –Operation (1) • Introduced by P. Prucnal (1993) • Nonlinearity: Semiconductor Optical • Amplifier (SOA) • Low control pulse (CP) power • High inter-channel crosstalk • Asymmetrical switching window profile • Synchronisation 0 Non-switching 180 Z Ghassemlooy

  21. +180 90 90 +180 0 0 90 0 90 +180 0 +180 90 90 0 0 90 90 +180 180+ 180 180 TOAD -Operation (2) • Introduced by P. Prucnal (1993) • Semiconductor Optical Amplifier • induces nonlinearity • Low control pulse energy • High inter-channel crosstalk • Asymmetrical switching window • profile Switching Z Ghassemlooy

  22. OFDL - 1 CP1 SOA1 UA E ( 0 ) Input UA LA = p + p E E ( ) E ( ) 2 , in out , 1 out out UA p E ( ) signal out UA C E ( 0 ) Port 1 2 1 T T delay delay C Port 2 3 C C 1 4 p LA E ( / 2 ) 2 LA p E ( / 2 ) CP2 = + p UA p LA ( 3 / 2 ) ( / 2 ) E E E out SOA2 , 2 out out out LA p E ( / 2 ) 1 , in OFDL - 2 PBS – Polarization beam splitter OFDL – Optical fibre delay line Control pulses (CP1 & CP2) are applied No control pulse is applied Symmetric Mach-Zehnder (SMZ) Z Ghassemlooy

  23. +180 +180 +180 +180 +180 +180 +180 +180 0 0 90 90 0 0 90 0 0 0 0 90 90 90 180 90 180 90 180 90 90 90 180 90 Symmetric Mach-Zehnder (SMZ) +180 +180 +180 +180 Switching window (SW) gain: SW width:Delay interval between two control pulses TSW Z Ghassemlooy

  24. Data pulse train Optical receiver VPI – SMZ Switch Z Ghassemlooy

  25. Clk Clock Extraction PPM-HP Router - Clock Extraction Optical packet Clock, header and payload: sameintensity, polarization andwavelength • Clock extraction requirements: • Asynchronous and ultrafast response • High on/off contrast ratio of extracted clock Z Ghassemlooy

  26. CP1 Clk GCP 12 12 SOA1 SOA1 22 22  SMZ-2 SMZ-1 12 12 22 22 22 22 in in 22 22 SOA2 SOA2 SW SW CP2 Optical fiber span Amplifier Attenuator Optical delay Polarization Beam Splitter (PBS) Polarization Controller (PC) Packet Routing –Clock Extraction Z Ghassemlooy

  27. GCP 12 12 SOA1 SOA1 22 22  SMZ-2 SMZ-1 12 12 22 22 22 22 in in 22 22 SOA2 SOA2 SW SW Optical fiber span Amplifier Attenuator Optical delay Polarization Beam Splitter (PBS) Polarization Controller (PC) Packet Routing –Clock Extraction Z Ghassemlooy

  28. Simulation –Clock Extraction 1st stage Packet in Crosstalk Extracted clock 2nd stage Z Ghassemlooy

  29. On / off contrast ratio against the timing offset of PPM header Packet Routing –PPM-HP Address Conversion Z Ghassemlooy

  30. A AB SOA1 B in SOA2 SW … … Packet Routing –PPM-HP Header Correlation • SMZ-based AND gate: only one bit-wise operation! • SOA gain recovery is no longer an issue, since it is saturated only once for header recognition A PP packet address AND gate A*B One PPRT entry B Ref:R. P. Schreieck et al.,IEEEQuantum Elec., Vol. 38, pp. 1053-1061, 2002 Z Ghassemlooy

  31. Simulation Results - AND operation Z Ghassemlooy

  32. low inter-output CR (< 10 dB) Improved CR (> 32 dB) 12 SMZ Switch with a High Contrast Ratio CEM: clock extraction module Z Ghassemlooy

  33. Packet Routing –PPM-HP All-Optical Flip-Flop • Operate at < nanoseconds responses • Multiple SET/RESET pulses for compensating the actual loop delay (~ hundreds • of picoseconds) and for speeding up the transient ON/OFF states of Q output Z Ghassemlooy

  34. Data packet @ 1 Data packet @ 2 SOA1 CW @ 2 22 22 SOA2 Packet Routing –PPM-HP Wavelength Conversion Z Ghassemlooy

  35. Packet Routing –PPM-HP Demultoplexer • SMZI • Compact size (integrated) • Ultrafast response (~ps) • Low energy (<pJ) • Flexible controlling schemes: Wavelengths, Orthogonal polarizations, Propagation directions • Multiple-channel demultiplexing • Each channel demultiplexing requires one SMZ Z Ghassemlooy

  36. Packet Routing –PPM-HP Chained Demultiplexer Z Ghassemlooy

  37. Fibre loop B In Out C A Switch Eye diagram after 200 iterations without regeneration Fibre Delay Line – Passive Z Ghassemlooy

  38. Optical amplifier DSF fibre loop B In Out C A Switch Clock Optical regenerator Eye diagram after 200 iterations with regeneration Fibre Delay Line – Passive Z Ghassemlooy

  39. VPI –PPMRouting Table Z Ghassemlooy

  40. Simulation Results – Node Performance 0 1 1 1 0 Packet with address 01110 PPM-converted address PPRT entry 1 Synchronized matching pulse Z Ghassemlooy

  41. VPI Simulation Software – Router Z Ghassemlooy

  42. Packet Routing –Multiple Routing Table Conventional RT Single PPRT Multiple PPRTs Z Ghassemlooy

  43. a4 a3a2 a1 a0 1 0 x x x PL PL PL PL PL A A A A A Clk Clk Clk Clk Clk PPMA Matched pulse Matched pulse Clk a3 a3 a4 … a2a1a0 Packet Routing –Multiple Routing Table All-optical Switch Port 1 OSW1 Port 2 … OSW2 … Port M OSWM Header Extraction PPM Add. Conversion CP 1 CP 2 Multiple PPRT CP M OSWC … &1 Entry 1 Clock Extraction Entry 2 OSWC &2 Synchronisation … … … Entry M OSWC &M Group A SW3 Group B Multicast transmission SW4 Multiple PPRT Generator Group C SW3 Group D Z Ghassemlooy

  44. Multi-hop Router An optical core network with 32 edge nodes (4 hops) Z Ghassemlooy

  45. Node/Router 2 B M Node/Router 3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B B M Simulation -Multiple-hop Routing Node/Router 1 B: broadcast M: multicast • Signal intensity is varied • Noise level is increased Z Ghassemlooy

  46. Simulation Results – Network Performance Multiple-hop OSNR Predicted & simulated OSNRs

  47. l PK @ 1 1 l PK @ 2 2 l PK @ 3 3 ... l PK @ M M l l PK PK @ @ 1 1 1 1 l l l 1 1 1 l l l 2 2 2 l l PK PK @ @ l l l 2 2 2 2 M M M l l PK PK @ @ M M M M Packet Routing –PPM-HP WDM Router … PPM - H P 1 WDM … MUX Output 1 … e 1 E E E E M 1 2 3 WDM PPM - H P 2 … … MUX Output 2 ... … WDM e DEMUX Input 2 … E E E E M 1 2 3 … WDM … PPM - H P M MUX … Output M … e M E E E E M 1 2 3 All-optical packet-switched WDM router Z Ghassemlooy

  48. Simulation Results - Time Waveforms Packets at the inputs of the WDM router Packets observed at the output 2 of the WDM router

  49. Future Work MIMO WDM Router • SIMO WDM Router Will PPM-HP help for a contention solution?  (FIFO) • PPM-HP Further PPRT downsizing? Address subsets  Multiple PPRTs  Router complexity? PPM-Address  • Experimental Test-bed: 4-SMZ Router Z Ghassemlooy

  50. Final Comments • PPM-HP • Provides ultrafast header processing • Reduces the number of routing table entries • Avoids the SOA recovery time during header correlation • Operates in a large BW as employing SOA • Supports multiple transmitting modes (uni/multi/broadcasting) • Offers add/drop edge node scalability Z Ghassemlooy

More Related