wilmar oliveira de queiroz ucg 2008 l.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
REDES INDUSTRIAIS PowerPoint Presentation
Download Presentation
REDES INDUSTRIAIS

Loading in 2 Seconds...

play fullscreen
1 / 157

REDES INDUSTRIAIS - PowerPoint PPT Presentation


  • 1128 Views
  • Uploaded on

Wilmar Oliveira de Queiroz UCG 2008. REDES INDUSTRIAIS. Redes Industriais. Tecnologias de automação Conceitos de redes industriais e corporativas Gerenciamento da informação em um processo industrial Sistemas de automação Industrial Requisitos dos Sistemas Industriais

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'REDES INDUSTRIAIS' - jacob


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
redes industriais
Redes Industriais
  • Tecnologias de automação
  • Conceitos de redes industriais e corporativas
  • Gerenciamento da informação em um processo industrial
  • Sistemas de automação Industrial
    • Requisitos dos Sistemas Industriais
    • Arquitetura de Controle Industrial
      • Nível de Campo
      • Nível de Controle
      • Nível de Planta
    • Principais Componentes de Sistemas Industrias
      • Computadores industriais
      • Sensores e atuadores
  • Fundamentos de Redes Industriais- Meios Físicos e Classificação de Protocolos- Modelos ISO/OSI- Acesso ao processo (dados, CRC, etc.). 
  • Sistemas Industriais de Comunicação- Fieldbus Foundation - Profibus- Devicenet- Interbus- AS-I- Modbus- DPN 3.00
slide3
Tendências Tecnológicas- A Integração Processo e Administração- Aplicações Especiais (medicina, robótica, etc.).- Ethernet Industrial (HSE)- Redes Wireless e Wire Wap (conceituação e aplicações)- Tendências de Integração de Camadas
  • Implantação de Redes Industriais- Análise de processo- Especificação- Projeto- Desenvolvimento- Implantação
  • Novos Conceitos de Controle e Gestão de Processos- OPC Server – Conceitos, Estrutura e Aplicações.- A Internet como Ferramenta na Gestão de Processos
  • Gestão Técnica de Processos Automatizados- Gestores Envolvidos e suas Relações- A importância das redes no Supply Chain Management
  • Exemplos de Utilização de Redes Industriais
  • Estudos de casos
slide4
Sistemas de Automação Industrial
  • Requisitos dos Sistemas Industriais
  • Arquitetura de Controle Industrial
    • Nível de Campo
    • Nível de Controle
    • Nível de Planta
  • Principais Componentes de Sistemas Industriais
    • Computadores Industriais
    • Sensores e Atuadores
  • Considerações Finais
  • Redes Industriais de Comunicação
  • Requisitos de Tempo-Real
    • Classificação de Sistemas e Tempos de Entrega
    • Escalonamento de Mensagens
  • Arquitetura do Sistema de Comunicação Industrial
    • Camadas OSI
    • Camadas OSI Aplicadas à Indústria
slide5
Topologias de Redes Industriais
    • Topologias de Rede
      • Topologia Estrela
      • Topologia de Barramento
      • Topologia em Anel
  • Interconectores de Rede
    • Hub
    • Switch
      • Funcionamento
      • Métodos de encaminhamento
      • Store-and-forward
      • Cut-through
      • Adaptative Cut-through
      • Vantagens do Uso de Switches em Redes Industriais
  • Ethernet Industrial
  • A Rede Ethernet
    • Algoritmo CSMA/CD
    • Componentes Principais de Sistemas Ethernet
  • Ethernet e as Restrições de Tempo Real
    • Determinismo em Redes Ethernet
      • Velocidade de Comunicação
      • Domínios de Colisão com Switches
      • Redundância de Links com Switches
    • Exemplos de Aplicações Industriais Baseadas em Redes Ethernet
      • Linha de Produção Automotiva
      • Ethernet no Controle de Navios
slide6
Suíte de Protocolos TCP/IP
    • Camadas
  • Arquiteturas de Comunicação
    • Ponto-a-Ponto
    • Mestre-Escravo
    • Cliente-Servidor
    • Produtor/Consumidor
  • Implementação
  • Arquitetura da Solução Proposta
    • RTnet
      • Serviços Básicos
      • Gerenciamento de Pacotes
      • Implementação UDP/IP
      • Camada de Driver
      • Media Access Control em Tempo Real
      • Camada MAC
      • Disciplina TDMA
      • Serviço de Configuração Tempo Real
    • O Protocolo RTPS / ORTE
      • Arquitetura
      • Mecanismos de Comunicação
    • ORTE
      • Implementação da Base de Dados
    • Arquitetura Proposta
      • Implementação
  • Resultados Obtidos e Análise
  • Conclusões
  • Referências Bibliográficas
hist rico
Histórico
  • Comunicação é uma necessidade primordial:
    • Local: fala, gestos
    • Longa distância: sinais de fumaça, pombo correio, “maratonistas”
    • Telégrafo em 1938 por Samuel Morse
    • Telefone, Rádio, TV, TV a cabo, Internet
  • Fusão do processamento da informação com a comunicação
    • Sistemas computacionais
  • Revolução da Comunicação pode ser comparada à Revolução Industrial?
hist rico8
Histórico
  • Ambiente industrial
    • Mudanças conceituais e nos projetos
    • Automação industrial
    • Automação predial
    • Integração de sistemas: CI’s e módulos dedicados
    • Padronização desses módulos:
      • Intercambiabilidade
      • Interoperabildade
      • Expansividade
    • Redução de custos
    • Novos modos de gestão/manutenção
hist rico9
Histórico
  • SDCD – Sistema Digital de Controle Distribuído
    • Computadores específicos:
      • S.O.
      • Programas aplicativos de controle e supervisão
      • Hardware
      • Configuração de dispositivos de I/O
      • Capacidade de processamento
      • Memória de programação
      • Quantidade de I/O
      • Interface com o usuário/operador
hist rico10
Histórico
  • SDCD – Sistema Digital de Controle Distribuído
    • Arquitetura:
      • Estações locais de interface com o processo:
        • Controle contínuo e sequêncial
        • Monitoração
        • Comunicação com controladores de malha simples
      • Interface H-M interativa para supervisão e monitoração do processo (monitor e teclado)
      • Redes de comunicação redundante (cabo coaxial ou fibra óptica)
    • São usados em processos não industriais
      • Sistemas de água e esgoto
      • Energia elétrica
      • Telecomunicações
    • Automação predial
      • Controle de utilidades
      • Detecção e alarme de incêndio
      • Controle de acesso
hist rico11
Histórico
  • Desenvolvimento dos CLP’s (Controladores Lógicos Programáveis), das IHM (Interface Homem Máquina), dos sensores, atuadores e sistemas de comunicação levaram a:
    • SDCD’s com arquiteturas mais flexíveis
    • Custo menor com mais eficiência e confiabilidade
  • Implementações atuais são Redes de CLP’s gerenciadas por SCADA (Supervisory Control and Data Acquisition)
slide12
CIM
  • CIM (Computer Integrated Manufacturing)
    • Sistemas que gerenciam processos de forma integrada (Manufatura Integrada por Computador)
    • Características:
      • Vários níveis (hierarquia)
      • Protocolos diferentes para cada nível
      • Controle distribuído
      • Centralização das macro-decisões
      • Integração das gerência técnico e administrativa
slide16
CIM
  • Atualmente a base de um CIM é formada por:
    • SDCD, que atua nos níveis:
      • Controle
      • Processo (execução, campo)
    • SCADA, que atua em todos os níveis
    • Redes de comunicação, que utilizam protocolos industriais (fieldbus)
slide17
CIM
  • Níveis hierárquicos de um CIM

Contabilidade de custos,

lucros e investimentos

Administração

Gerenciamento

Planejamento

Operacional

Desenvolvimento, projeto e planejamento (qualidade e

capacidade). Supervisiona o sistema para otimização

Coordenação

Engenharia

Definição, resolução e restrição das atividades e

planos de trabalho detalhados

Controle

Controle e

monitoramento em tempo real

Execução

Processo.

Chão de fábrica

arquiteturas
Arquiteturas
  • Início: baseavam-se em Controladores de Malha Única de Realimentação (SLC – Single-Loop Controllers)
  • Nos anos 60: Controles Digitais Diretos (DDC – Direct Digital Controller)
    • Grande número de malhas em um único computador
    • Cada computador centraliza todas as informações e funções de controle
  • Nos anos 70/80: Sistemas de Controle Distribuído (DCS – Distributed Controller Sistem)
  • Nos anos 90: SDCD – Sistemas Digitais de Controle Distribuído, que é um misto de SLC e o DDC
    • Malhas de controle em pequenos grupos
    • Cada grupo tem seu próprio processamento (controlador)
    • Controladores são conectados através de um barramento de comunicação de dados (Data Highway Bus)
    • O barramento normalmente é duplicado
    • Razões para se usar o processamento distribuído e paralelo
      • Tempos de resposta necessários em alguns processamentos podem não ser alcançados com um único processador
      • Múltiplas cópias dos componentes dos sistemas levam a uma maior flexibilidade e redundância
      • Algumas aplicações são, por natureza, geograficamente distribuídas
arquiteturas19

Data highway

Duplicação

Unidade

de

Controle

Unidade

de

Controle

Unidade

de

Controle

Unidade

de

Controle

Unidade

de

Controle

Sensores/

Atuadores

Sensores/

Atuadores

Sensores/

Atuadores

Sensores/

Atuadores

Sensores/

Atuadores

Arquiteturas
  • Estrutura de um SDCD com barramento duplo
topologias
Topologias
  • A topologia refere-se à forma com que os enlaces físicos e os nós de comutação estão organizados
  • Estrela
    • Nó central (mestre) se comunica com cada um dos demais nós (escravos)
    • Não existe comunicação direta entre dois escravos
    • A gerência das comunicações é feita pelo mestre
    • Os escravos podem ter protocolos e/ou velocidades de transmissão diferentes
    • Cada nó é interligado à rede através de uma interface de acesso ao meio
    • Falhas em um nó escravo afetam somente o nó defeituoso
    • Falha no nó central compromete toda a rede
topologias anel
Topologias - Anel
  • Ligação sequencial fechada entre todas as estações de trabalho da rede
  • Ligações são unidirecionais e os dados circulam no anel
  • As estações são conectadas através de repetidores
  • Uma estação coloca seus dados no anel enviando sua mensagem para a estação seguinte
  • A mensagem passa de estação em estação até o seu destino
  • A mensagem é retirada do anel ou pela estação de origem, ou de destino ou pela estação controladora
  • Falhas em uma estação afeta somente essa estação
  • Falhas no anel ou nos repetidores comprometem toda a rede
topologias barramento
Topologias - Barramento
  • As estações estão conectadas a um barramento
  • Todos os dados enviados são recebidos por todas as estações
  • O controle de acesso ao meio, normalmente, é distribuído
  • Falha em uma estação afeta somente essa estação
  • Falha no barramento compromete toda a rede
modelo osi
Modelo OSI
  • Modelo OSI

APLICAÇÃO

A

A

APRESENTAÇÃO

A

A

A

A

SESSÃO

A

A

S

S

A

A

A

A

S

T

TRANSPORTE

T

S

A

A

REDE

R

A

A

S

T

R

T

S

A

A

R

E

A

A

S

T

ENLACE

E

R

T

S

A

A

FÍSICA

R

E

A

A

S

T

F

F

E

R

T

S

A

A

modelo osi28
Modelo OSI
  • Camada Física
    • Responsável pela ativação, desativação e manutenção do sinal no meio físico
    • Define a interface elétrica e mecânica com a rede: RS-232, RS-422, RS-485, V.35, G.703, RJ-45, etc.
    • Define o tipo do sinal: digital/broadband ou analógico/baseband
    • Define o tipo de conexão: ponto-a-ponto ou multiponto
    • Define o sentido de transmissão: simplex, halfduplex e fullduplex
    • Define a forma de multiplexação do sinal: FDM, TDM
    • Equipamentos: repetidores, hubs, modens e multiplexadores
    • Unidade de dados: bit
modelo osi29
Modelo OSI
  • Camada de Enlace
    • Gerenciamento do enlace
    • Detecção e correção de erros causados pelo meio físico
    • Controle de fluxo dos dados
    • Enquadramento da mensagem
    • Endereçamento físico na rede
    • Controla o acesso ao meio
    • Protocolos: IEEE 802.2 (LLC), Frame Relay, SDLC, HDLC, SLIP, PPP
    • Equipamentos: bridges e switches
    • Subcamadas: LLC e MAC:Ethernet, Token Ring, FDDI
    • Unidade de dados: quadro
modelo osi30
Modelo OSI
  • Camada de Rede
    • Realiza o roteamento dos pacotes
    • Compatibilização entre redes de tecnologias diferentes
    • Controle de fluxo dos dados
    • Serviços: datagrama (correio eletrônico, transferência de arquivos, etc.) e circuito virtual (aplicações em tempo real, etc.)
    • Pode fragmentar/remontar os pacotes
    • Endereçamento lógico
    • Protocolos: IP, IPX, XNS, CLNP
    • Unidade de dados: datagrama ou pacote
modelo osi31
Modelo OSI
  • Camada de Transporte
    • Comunicação fim-a-fim
    • Controle de erros fim-a-fim
    • Segmentação e blocagem
    • Controle de fluxo fim-a-fim (buffers, janelamento)
    • Gerenciamento da conexão
    • Multiplexação de aplicações
    • Oferece os serviços confiável ou não
    • Endereçamento da aplicação: port
    • Protocolos: TCP, SPX (Sequenced Packet eXchange), TP4 (Transport Protocol Class 4), etc
modelo osi32
Modelo OSI
  • Camada de Sessão
    • Sincronização das tarefas entre máquinas
    • Gerenciamento de diálogos e de atividades
    • Controla o intercâmbio de dados
    • Estabelece, gerencia e finaliza sessões entre aplicações
    • Protocolos: NetBIOS (Network Basic Input Output System - IBM/Microsoft), Netware RPC (Novell), VINES NetRPC (Banyan), ASP (AppleTalk Session Protocol - Apple), DNASCP (Digital Network Architecture Session Control Protocol - DEC)
modelo osi33
Modelo OSI
  • Camada de Apresentação
    • Interpretação e representação/sintaxe dos dados (codificação)
    • Uniformiza o formato de dados
    • Compressão de dados, criptografia
    • Segurança e privacidade da rede
    • Codificação de textos e dados: EBCDIC, ASCII
    • Codificação de gráficos e imagens: CGM, PICT, TIFF, JPEG
    • Codificação de sons e animações: WAV, MPEG
modelo osi34
Modelo OSI
  • Camada de Aplicação
    • Serviços transparentes para o usuário
    • Aplicações para estações: Processador de textos, Banco de dados, Planilha de cálculo
    • Aplicações para rede: Correio eletrônico, Transferência de arquivos, Emulação de terminal, gerenciamento
    • Elementos de serviço genérico: ACSE, ROSE, RTSE
    • Elementos de serviço específico: FTAM, VT, X.400, MHS
arquitetura tcp ip

FTP

TELNET

SMTP

DNS

RPC

SNMP

TFTP

TCP

UDP

ICMP

IP

IGMP

ARP

INTERFACE DE HARDWARE

RARP

MEIO FÍSICO

Arquitetura TCP/IP
controle centralizado
Controle Centralizado
  • Os dispositivos ficam em um mesmo ambiente
  • Vários computadores compartilham um barramento comum
  • Soluções comerciais mais utilizadas:
    • UME
    • FUTUREBUS
    • S100
    • MULTIBUS II
    • GPIB (General Purpose Interface Bus) 488 da IEEE (substituiu o S100)
  • O controlador mestre executa tarefas de controle global
    • Comunicação com os níveis de controle superior
    • Operações de sincronização
    • Coordenação de movimentos
    • Cálculos
  • O escravo opera em nível de atuador
    • Tarefas de controle ou malha fechada
    • Processamento de sinais
    • Medidas
controle distribu do
Controle Distribuído
  • Os controladores, atuadores e transdutores são distribuídos espacialmente
  • São conectados por uma rede de comunicação chamada FIELDBUS, ou barramento de campo
  • O cabeamento é bastante reduzido
  • O controlador coleta informações de vários transdutores, e baseado nos algoritmos dos programas aplicativos, controla vários atuadores
  • As tarefas de controle são centralizadas
transmiss o de sinais
Transmissão de sinais
  • Comunicação paralela
    • Ocorre entre sistemas digitais localizados próximos um do outro
    • São enviados vários bits de cada vez
    • O meio de transmissão é composto de vários canais, um para cada bit
    • Para grandes distâncias é muito caro
    • É mais complexa que a serial
    • As velocidades são maiores
    • Apresenta baixa imunidade a ruídos
transmiss o de sinais40
Transmissão de sinais
  • Comunicação serial
    • Os dados são transmitidos em uma sequência serial de bits
    • É menos complexa que a paralela
    • Utiliza apenas um canal de comunicação
    • As velocidades são menores
    • O custo é menor
    • Maior imunidade a ruídos
    • Modos de comunicação:
      • Síncrono
      • Assíncrono
transmiss o serial s ncrona
Transmissão serial síncrona
  • Necessita de um sincronismo entre os sistemas de comunicação
    • Um dos sistemas deve gerar o clock (largura do pulso)
    • Os sistemas transmitem e recebem os dados como registradores de deslocamento (shift-registers) – entrada paralela e saída serial
    • O tempo é dividido em intervalos de tamanho fixo (corresponde a um bit)
    • Não necessita de sinais adicionais de início e fim da mensagem
transmiss o serial ass ncrona
Transmissão serial assíncrona
  • Não é necessário gerar clock
  • O clock é interno em cada sistema mas devem ter a mesma taxa de transmissão de dados (baud rate)
  • O controle de tempo de uma sequência de bits (byte) é muito importante
  • A transmissão é feita caracter a caracter (byte a byte)
  • Cada caractere é encapsulado por um sinal de start e um de stop
  • Os dados podem então serem transmitidos aleatoriamente no tempo
  • Erros podem ocorrer e devem ser tratados:
    • Paridade (par ou ímpar)
    • Checksum
    • CRC
  • É o mais utilizado pois o hardware é mais simples
transmiss o serial de sinais
Transmissão serial de sinais
  • Tipos de comunicação
    • Simplex
    • Half-duplex
    • Duplex
  • Classificação quanto à referência
    • Desbalanceada
      • O sinal de dados tem como referência o “terra” dos sistemas conectados
      • Baixa imunidade a ruídos (interferência somente nos fios de dados)
    • Balanceada
      • A referência do “terra” é desconectada entre os sistemas
      • Alta imunidade a ruídos (interferência afeta igualmente o sinal e a referência)
transmiss o serial de sinais44
Transmissão serial de sinais
  • Principais padrões de interface serial
    • RS-232
    • RS-422
    • RS-485
    • V.35
    • USB
rs 232
RS-232
  • Desenvolvido originalmente para as conexões entre DTE (Data Terminal Equipment – microcomputadores, terminais, controladores) e DCE (Data Comunication Equipment – modens)
  • Usa a transmissão desbalanceada com três fios (tx, rx e terra)
  • Pinos utilizados:

1 – DCD (Data Carrier Detect)

2 - Rxd (Receive data)

3 - Txd (Transmit data)

4 - DTR (Data Terminal Ready)

5 - SG (Signal Ground)

6 - DSR (Data Set Ready)

7 - RTS (Request To Send)

8 - CTS (Clear To Send)

9 – RI (Ring Indicator)

  • Usa-se normalmente o conector de 9 pinos (DB-9)
  • Alcance máximo de 15m
  • Bit 0: +5V a +15V na saída e +3V a +15V na entrada
  • Bit 1: -5V a -15V na saída e -3V e -15V na entrada
rs 422
RS-422
  • Usa a transmissão balanceada
  • Utiliza conectores existentes:
    • DB-9 ou DB-25 com pinagem não padronizada
    • DB-25 com padrão RS-530
    • DB-37 com padrão RS-449
  • É usado comumente em comunicações ponto a ponto realizadas por um drive dual-state
  • É usado em transmissões de longa distância (1200m), altas velocidades (dois pares de fio para transmissão duplex)
  • A versão desbalanceada é a RS-423
rs 485
RS-485
  • Desenvolvido pela EIA – Electronics Industry Association
  • Somente um par de fio é compartilhado para transmissão e recepção
    • Vantagem: pode-se interligar vários equipamentos no mesmo cabo
    • Desvantagem: a comunicação deve ser half-duplex, deve existir algoritmo (ou gerenciador de rede) para gerenciar a transmissão (evitar/tratar colisões)
    • Não especifica ou recomenda protocolos
  • O alcance é de até 1200m (compatível com RS-422)
  • Máximo de 32 terminais remotos em cada nó da rede que devem ser endereçáveis
  • Único PC como mestre da rede
  • Taxa de transmissão: 15m ~ 10Mbps e 1200m ~ 100Kbps
  • Características elétricas:
    • Comunicação em modo diferencial com tensão de 5V em relação ao terra
    • Grande imunidade a IEM – Interferência Elétrico-Magnética devido ao modo diferencial
    • Obrigatório o uso de resistores pull-up e pull-down na linha principal e resistores de terminação da rede para o casamento de impedância
rs 48550
RS-485
  • Transceptor MAX-485
    • RO – entrada para recepção
    • RE – habilitação da recepção
    • DE – habilitação da transmissão
    • DI – entrada para transmissão
    • GND e Vcc – alimentação do CI
    • A – entrada não inversora
    • B – entrada inversora
      • Normalmente os pinos DE e RE são jumpeados
      • Para transmitir habilita o pino DE e desabilita o pino RE
      • Normalmente o transceptor fica no modo recepção (pino RE ativado)
rs 48551
RS-485
  • Exemplo de um sistema RS-485
rs 48552
RS-485
  • Exemplo de um sistema RS-485
rs 232 para rs 485
RS-232 para RS-485
  • RS232 para RS485
rs 48554
RS-485
  • Aplicação típica: mestre-escravo
    • Os escravos recebem um endereço e apenas respondem ao mestre (evita-se colisões)
    • O computador central controla várias máquinas de Controle Numérico
rs 48555
RS-485
  • Aplicação típica: half-duplex com todos se comunicando
    • O funcionamento depende do protocolo de comunicação adotado
    • Exemplo: sistema de robô da Mecajun/LCVC
    • A câmera transmite informações para a placa central, (Vortex86) que envia a s decisões para a placa de controle dos motores. Quando um evento ocorre com os sensores de toque e/ou de luz a informação deve ser enviada tanto para os motores como para a placa de controle central
rs 48557
RS-485
  • Montagem da rede
rs232 rs423 rs422 e rs485

Caracterísitcas

RS232

RS423

RS422

RS485

Referência

Desbalanceada

Desbalanceada

Balanceada

Balanceada

Quantidade de dispositivos

2

2/10

10

32

Distância máxima

15m

1200m

1200m

1200m

Taxa transm. máxima

20 Kbps

100 Kbps

10 Mbps

10 Mbps

Tensão máxima comum

+ - 25V

+ - 6V

+ - 6 a -0,25V

+12V a -7V

Nível transmissão

5V min

15V máx

2V min

2V máx

2V min

2V máx

1,5V min

2V máx

Sensibilidade entrada

+ - 3V

+ - 0,2V

+ - 0,2V

+ - 0,3V

Resistência entrada

3 a 7 KOhm

>4 KOhm

>4 KOhm

>12 KOhm

RS232, RS423, RS422 e RS485
meios f sicos de transmiss o
Meios físicos de transmissão
  • Par tançado
  • Cabo coaxial
  • Fibra ótica
    • Multimodo com índice degrau
    • Multimodo com índice gradual
    • Monomodo
  • Transmissão sem fio
  • Spread spectrum
    • Modulação FHSS
    • Modulação DSSS
  • Modem
  • Transmissão de dados sem fio de uso industrial
    • Rádio de dados (Data Radios)
    • Rádio MODEM transparente
    • Rádio MODEM inteligente
    • Rádio-telemetria
    • Rádio-telemetria com integração de CLP e sistemas SCADA
  • Transmissão de dados via sistema de telefonia móvel celular
    • SMS x GPRS
    • Bluetooth
    • Zigbee
par tran ado
Par trançado
  • UTP (Par Trançado Não Blindado), originalmente projetado para voz, é o tipo de cabo mais utilizado em razão:
    • Do seu baixo custo, facilidade de instalação, flexibilidade em mudanças e alterações
    • Da capacidade de suportar a completa largura de banda
    • Boa resistência ao crosstalk (as tranças evitam a interferência entre os pares do cabo
  • O padrão Categoria 5 (CAT5) estabelece os requisitos mínimos para o cabeamento de telecomunicações dentro dos prédios ou entre os prédios do campus e é o cabeamento UTP mais popular instalado em comunicação de dados. O CAT5 deve ser capaz de suportar voz ou dados a 100 MHz sobre fios 22 ou 24 AWG
  • A Categoria 5 enhanced (CAT5e) é um padrão com requisitos ligeiramente superiores ao CAT5.
  • A Categoria 6 Classe E (CAT6) é o padrão em estudo pela TIA/EIA. Tanto a CAT6 como a Categoria 7 Classe F (CAT7) são apenas propostos não existindo padronização oficial.
par tran ado63
Par trançado
  • Cabos UTP Blindados vs. Não Blindados
  • O ambiente em que será instalado é que determina se o cabo a ser utilizado deverá ser blindado ou não blindado
  • A blindagem é a capa que envolve os fios de um cabo e protegem contra a interferência e descarga eletromagnética (EMI). Essa atividade eletromagnética é conhecida por ruído
  • As fontes de EMI em um ambiente de trabalho podem ser motores de elevadores, lâmpadas fluorescentes, geradores, compressores, condicionadores de ar e fotocopiadoras
  • Para proteger os dados em um ambiente ruidoso (nível elevado de EMI), utiliza-se cabos blindados. O tipo de blindagem mais comum é a folha metalizada, porém a malha de cobre oferece maior proteção
  • Em ambientes de escritório sem fontes de interferência pode-se utilizar cabos não blindados, em escritórios ou lojas movimentadas sujeitas a alguma interferência recomenda-se o uso de cabos com blindagem de folha metalizada e em ambientes industriais o mais recomendado é o cabo com blindagem de malha de cobre.
par tran ado64
Par trançado
  • Crosstalk
  • Uma das mais importantes diferenças entre os padrões CAT5 e os mais novos está nas especificações NEXT
  • O NEXT (Near-End Crosstalk) é a interferência no sinal de um par sobre um outro na mesma extremidade do cabo. O Crosstalk não ocorre apenas no par adjacente (pair to pair NEXT), mas todos os outros pares de um cabo UTP podem interferir com seus próprios níveis em ambas as extremidades do cabo, multiplicando o efeito dessa interferência sobre o par transmissor ou receptor
  • Em razão destes níveis de interferência poder debilitar redes de alta velocidade, alguns fabricantes de cabos começaram a apresentar as taxas de NEXT, FEXT, PS-NEXT, ELFEXT e PS-ELFEXT para seus cabos CAT5e e Categoria 6 (proposto)
  • O PS-NEXT inclui a soma total de todas as interferências que podem ocorrer entre um par e todos os pares adjacentes de um cabo
  • O FEXT mede a interferência de um par em uma extremidade do cabo em outro par na outra extremidade do cabo
  • O ELFEXT (Equal-Level Far-End Crosstalk) mede o FEXT em relação ao nível do sinal recebido medido no mesmo par. Ele mede basicamente a interferência sem os efeitos da atenuação - o nível equalizado.
  • O PS-ELFEXT mede a soma total de todas as interferências dos pares de uma extremidade em um par da outra extremidade sem os efeitos da atenuação.
par tran ado65
Par trançado
  • Crosstalk
par tran ado66
Par trançado
  • Decibel (dB)
  • É um termo muito utilizado em diversas áreas, como: áudio, eletrônica, telecomunicações, entre outras
  • Representa o ganho ou a atenuação de um sinal, de um som, etc
  • O decibel é uma unidade logarítmica que representa uma relação entre um valor de entrada e um de saída (som, alimentação, voltagem, corrente, campo magnético etc)
  • O resultado desta relação pode ser ganho, quando a saída é maior que a entrada (número positivo), ou atenuação, quando a saída é menor que a entrada (número negativo)
  • O ganho ou atenuação, podem ser calculadas pela fórmula 10log(out/in), com log na base 10 e resultado em dB
  • Além do decibel apresentado, onde os valores de entrada e saída são variáveis, existem algumas derivações utilizando um valor de entrada padrão fixo
  • O dBm que utiliza um sinal padrão de 1 miliwatt resultando na fórmula 10log(saída(mw)/1mw)
  • O dBu que utiliza 0,775volts como sinal padrão e tem como fórmula 20log(tensão de saída(volts)/0,775volts)
  • O dBVU de sinal padrão 250 nano webers/m (medida de campo magnético) e fórmula 10log(saída (em nw/m)/(250nw/m)).
  • Como ilustração, cabos de par trançado CAT5e de boa qualidade apresentam atenuação em torno de 26,4 dB/100m a 100 MHz e de 53,8 dB/100m a 350MHz. Os Cabos de Fibra Óptica multimodo apresentam atenuação menor que 3,75 dB/Km em 850 nm e menor que 1,5 dB/Km em 1300 nm. E os cabos de Fibra monomodo em torno de 1 dB/Km em 1300 nm.
protocolos industriais e prediais
Protocolos industriais e prediais
  • Avanço das tecnologias
  • Queda nos preços dos dispositivos
  • Aumento no uso de sistemas informatizados
  • Redes locais em ambientes administrativos:
    • Redes corporativas
  • Redes locais em ambientes industriais:
    • Redes fieldbus (industriais)
      • Maior confiabilidade
      • Tempo real
protocolos industriais e prediais69
Protocolos industriais e prediais
  • Sistemas de comunicação de dados utilizados para troca de informações dentro de processos industriais e entre processos industriais.
  • Possuem como requisitos:
    • Boa resistência mecânica
    • Resistência a chama, umidade e corrosão
    • Alta imunidade a ruídos
    • Taxa de erros baixa ou quase nula
    • Tempo de acesso e de propagação limitados
    • Tempo entre falhas e tempo de reparo baixos
    • Boa modularidade e possibilidade de interconexão
protocolos industriais e prediais70
Protocolos industriais e prediais
  • Os protocolos de campo podem ser separados em três categorias:
    • Nível mais baixo (sensorbus) – redes de dispositivos simples (sensores/atuadores em nível de bit – I/O): ASI (Actuator Sensor Interface), SERIPLEX, Interbus-S, Profibus-PA, HART
    • Nível médio (devicebus) – redes de controladores de campo (comunicação serial entre CLP): CAN (Controller Area Network), Lonworks, DeviceNET, Profibus-DP
    • Nível alto (fieldbus)– redes de controladores (mestres) para controles e instrumentação mais sofisticada: SP50-H2, Ethernet Industrial, Profibus-FMS
modbus
MODBUS
  • O Protocolo Modbus
    • Desenvolvido pela Modcon em 1979
    • É um protocolo de mensagens, localizado na Camada de Aplicação do Modelo OSI, que provê comunicação cliente/servidor entre dispositivos conectados por diferentes tipos de barramentos ou redes
    • Baseado no modelo mestre/escravo
    • Os escravos não podem dialogar entre si
    • O mestre trabalha em dois modos:
      • modo requisição/resposta: pode enviar mensagem para um escravo (sensor, válvula, driver de rede, ..) em particular
      • modo difusão:pode enviar uma mensagem comum a todos os escravos
    • Como o mestre e os escravos estão ligados a um barramento bidirecional é necessário designar um endereço (de 1 a 247) para cada escravo (unicast). O endereço “0” é usado para broadcast
    • Atribuições do mestre:
      • Assegurar a troca de informações entre as ECL (Estações de Controle Local) ou ETD (Equipamento Terminal de Dados)
      • Assegurar o diálogo com o operador do sistema (homem/máquina)
      • Assegurar um diálogo com outros mestres ou com um computador (gestão centralizada do conjunto do processo)
      • Assegurar a programação ou passagem de parâmetros para os escravos
modbus75
MODBUS
  • Atualmente é implementado usando:
    • TCP/IP sobre Ethernet (MODBUS TCP/IP)
      • Usado para comunicação entre sistemas de supervisão e CLP’s
      • Os dados, em formato binário, são encapsulados em quadros Ethernet e pacotes TCP/IP
      • Utiliza a porta 502 da pilha TCP/IP
    • MODBUS PADRÃO
      • Usado para comunicação dos CLP’s com os módulos de E/S, atuadores de válvulas, transdutores de energia, etc
      • O Protocolo é o Mestre-Escravo
      • Transmissão serial assíncrona sobre vários meios:
        • EIA/TIA-232-E, EIA/TIA-422, EIA/TIA-485-A, Fibra ótica, Rádio
    • MODBUS PLUS
      • Rede de passagem de token de alta velocidade
      • Usado para comunicação entre si de CLP’s, módulos de E/S, IHM, etc
      • O meio físico é o RS485, taxa de transmissão de 1 Mbps
      • Controle de acesso ao meio através do Protocolo HDLC
modbus76
MODBUS
  • Tipos de Protocolos MODBUS
modbus79
MODBUS
  • Abreviaturas
    • ADU – Application Data Unit
    • HDLC – High level Data Link Control
    • HMI – Humam Machine Interface
    • IETF – Internet Engineering Task Force
    • I/O – Input/Output
    • IP – Internet Protocol
    • MAC – Medium Access Control
    • MB – MODBUS Protocol
    • MBAP – MODBUS Application Protocol
    • PDU – Protocol Data Unit
    • PLC – Progammable Logic Controller
    • TCP – Transmission Control Protocol
    • TIA – Telecommunication Industry Association
    • EIA - Electonic Industries Alliance
modbus80
MODBUS
  • Descrição do protocolo
    • O protocolo MODBUS define uma única PDU, independente do protocolo de comunicação
    • O mapeamento (encapsulamento) do protocolo MODBUS em um barramento ou rede específica introduz alguns campos adicionais, criando a ADU
modbus81
MODBUS
  • Codificação de mensagens
    • As mensagens são constituídas por um conjunto de caracteres hexadecimais ou ASCII
    • O tamanho máximo da PDU é de 253 bytes, então:
      • RS232/RS485 ADU = 253 (dados) + 1 (endereço) + 2 (CRC)
      • TCP/IP MODBUS ADU = 253 (dados) + 7 (MBAP)
    • Os serviços são especificados por códigos de função
    • Cada serviço possui um formato de mensagem para a requisição e outro para a resposta
    • Códigos válidos vão de 1 a 255, sendo que de 128 a 255 são reservados para respostas de exceção. O bit mais significativo é o que decide o tipo do código
    • Códigos de sub-função podem ser adicionados aos códigos de função para definir múltiplas ações
modbus82
MODBUS
  • Transações entre mestre e escravo
modbus83
MODBUS
  • O campo dados da mensagem enviada de um mestre para um escravo (dispositivo servidor) contém informações adicionais que auxiliam o escravo a executar a ação requerida no campo código da função, como:
    • Endereços dos registradores (registro inicial)
    • Quantidade de registros a serem lidos
    • Contador da quantidade de bytes no campo de dados
  • O campo de dados pode não existir. Neste caso o próprio código da função sozinho especifica a ação requerida
  • Se não ocorrer nenhum erro na função especificada na requisição, a resposta do escravo conterá o dado requisitado, caso contrário o campo dados conterá um código de exceção
modbus84
MODBUS
  • Formato da requisição:
    • Nº do endereço do escravo (1 byte)
    • Código da função a realizar (1 byte)
      • Comandos de escrita ou leitura
    • Dados
      • Endereço da posição de memória (2 bytes)
      • Quantidade de operandos (2 bytes)
        • Para múltiplos operandos o 1º byte especifica o operando e o 2º especifica o número de operandos
      • Dados a serem escritos no escravo (até 250 bytes)
    • Controle de erros (2 bytes): CRC-16
modbus85
MODBUS
  • Formato da resposta:
    • Nº do endereço do escravo (1 byte)
    • Código da função realizada (1 byte)
      • Comando solicitado de escrita ou leitura
    • Dados
      • Quantidade de dados da resposta (1 bytes)
      • Dados solicitados para o escravo (até 250 bytes)
    • Controle de erros (2 bytes): CRC-16
modbus86
MODBUS
  • Funções para troca de mensagens
    • Leitura de dados
    • Escrita de dados
    • Difusão de dados (broadcast)
  • Tipos de dados
    • Dados de 1 bit
      • Bobinas (coils): podem ser lidos ou escritos no escravo
      • Entradas (inputs): leitura do escravo
    • Dados de 16 bits (registros)
      • Retentivos (holding): podem ser lidos ou escritos no escravo
      • Entradas (inputs): leitura do escravo
modbus87
MODBUS
  • Alguns códigos de requisição de serviços (comandos)

01 - Read coil status: leitura de múltiplos operandos do tipo coil (leitura do estado das saídas discretas)

02 - Read input status: leitura de múltiplos operandos do tipo input (leitura do estado das entradas discretas)

03 - Read holding register: leitura de múltiplos operandos do tipo holding register (leitura dos valores dos registradores de memória)

04 -Read input register: leitura de múltiplos operandos do tipo input register (leitura dos valores das entradas analógicas)

05 - Force single coil: escrita de um único operando do tipo coil (escrita de uma única saída discreta)

06 - Preset single register: escrita de um único operando do tipo holding register (escrita de um valor em um registrador de memória)

0F - Force multiple coils: escrita de múltiplos operandos do tipo coil (escrita de múltiplas saídas discretas)

10 - Preset multiple registers: escrita de múltiplos operandos do tipo holding register (escrita de múltiplos valores em registradores de memória)

modbus88
MODBUS
  • Endereços lógicos dos dados (memória é dividida em registradores de 16 bits)
    • 00001 a 09999 – coils (solenóides, saídas discretas para os atuadores ON-OFF utilizam um bit. Cada registrador comporta 16 saídas)
    • 10001 a 19999 – inputs (entradas discretas para os sensores ON-OFF utilizam um bit. Cada registrador comporta 16 saídas)
    • 30001 a 39999 – inputs registers (entradas analógicas utilizam registradores de 16 bits para os valores obtidos dos conversores A/D a partir do sinais dos sensores analógicos)
    • 40001 a 49999 – holding registers (registradores de memórias com 16 bits para os valores utilizados internamente nos CLP’s)
    • Na prática todos os endereços lógicos variam de 0 a 9998 e a identificação está associada ao tipo do serviço (código da função)
  • Endereços dos dispositivos
    • “0” para difusão
    • De 1 a 247 para os escravos (dispositivos)
modbus89
MODBUS
  • Detecção de erros
    • Checagem de paridade do caracter do frame
      • Par
      • Ímpar
      • Sem paridade
    • Checagem de quadro na mensagem
      • ASCII – LRC (2 bytes)
      • RTU – CRC (2 bytes) – complemento a 2 da soma de todos os bytes da mensagem, exceto os delimitadores
  • Temporizações
    • O tempo de linha inativa entre bytes de uma mesma mensagem deve ser menor que 1,5 tempos de byte
    • Entre duas mensagens consecutivas deve existir um tempo mínimo de inatividade na linha de 3,5 tempos de byte
    • Existe um atraso máximo (timeout) para receber uma resposta do escravo. Se o timeout estourar, o mestre faz nova tentativa
modbus90
MODBUS
  • Formatos dos pacotes de comunicação (modo de transmissão)
    • MODBUS ASCII
      • Os dados são codificados em caracteres ASCII de 7 bits (0 a 9 e A a F)
      • Intervalos <= 1 seg são permitidos durante a transmissão da mensagem
      • Usa delimitador de início e fim de mensagem (inicia com “:” e termina com “CR” e “LF”)
      • 10 bits por “byte” (caractere):
        • 1 start bit (caracter “:” – 3Ah)
        • 7 bits de dados
        • 1 bit de paridade
        • 1 stop bit (caracter CR e LF – 0Dh e 0Ah)
        • Sem bit de paridade, então:
        • 2 stop bit
modbus91
MODBUS
  • MODBUS RTU (Remote Terminal Unit)
    • Os dados são transmitidos em formato binário de 8 bits (0 a 252 bytes)
    • Os delimitadores de início e fim são um intervalo (silêncio) de 3,5 caracteres
    • 11 bits por “byte” (caractere):
      • 1 start bit
      • 8 bits de dados
      • 1 bit de paridade
      • 1 stop bit
      • Sem paridade, então:
      • 2 stop bit
    • Silêncio ≥ 3,5 caracter
modbus92
MODBUS
  • Transmissão de quadros no modo RTU ao longo do tempo com os intervalos mínimos de tempo entre quadros e máximos entre caracteres
modbus94
MODBUS

RTU – CRC (Cyclical Redundancy Checking)

  • O CRC é aplicado na mensagem inteira
  • É indiferente ao tipo de paridade usado nos caracteres individuais da mensagem
  • Os bits de start, stop e paridade não entram no cálculo
  • Os dois bytes são adicionados ao final da mensagem (byte de baixa ordem + byte de alta ordem)
  • O CRC é calculado pelo transmissor. O receptor calcula o CRC e compara com o valor recebido. Se não são iguais existe um erro e a mensagem é descartada
  • O cálculo do CRC é feito da seguinte forma:
    • Carregue o registrador CRC de 16 bits com FFFF (tudo 1)
    • Faça a operação XOR do primeiro byte da mensagem com o byte de mais baixa ordem do registrador, colocando o resultado no registrador
    • Desloque o registrador de um bit para a direita, em direção ao bit LSB, colocando o valor 0 na posição do bit MSB
    • Extraia e examine o LSB:
      • Se LSB=0, volte ao passo 3 e faça novo deslocamento
      • Se LSB=1 faça um XOR do valor do registrador com o valor do polinômio 0xA001 (x15 + x13 + 1)
    • Repita os passos 3 e 4 até que 8 deslocamentos tenham sido realizados para que um byte seja completamente processado
    • Repita os passos 2 até 5 para o próximo byte da mensagem. Continue repetindo até que todos os bytes da mensagem tenham sido processados
    • O conteúdo final do registrador é o valor do CRC
    • Na mensagem o byte menos significativo é colocado primeiro
modbus95
MODBUS

ASCII – LRC (Longitudinal Redundancy Checking)

  • O LRC é aplicado na mensagem inteira
  • É indiferente ao tipo de paridade usado nos caracteres individuais da mensagem
  • Os caracteres “:” e “CRLF” não entram no cálculo
  • O cálculo é feito antes de codificar cada byte hexadecimal em dois bytes ASCII
  • Os bytes de LRC são adicionados ao final da mensagem
  • O LRC é calculado pelo transmissor. O receptor calcula o LRC e compara com o valor recebido. Se não são iguais existe um erro e a mensagem é descartada
  • O cálculo do LRC é feito da seguinte forma:
    • Adiciona-se, sucessivamente, cada byte da mensagem
    • Os bits de carry são descartados
    • Ao resultado aplica-se o complemento a dois
    • O resultado é codificado em dois bytes ASCII
    • O byte mais significativo é transmitido primeiro
slide96

EXEMPLO DE CÁLCULO DE CRC PARA OS VALORES 0207

AÇÃO

1º BYTE

2º BYTE

FLAG

INICIALIZAÇÃO DO REGISTRADOR CRC

1111

1111

1111

1111

1º CARACTERE

0000

0000

0000

0010

XOR ENTRE REGISTRADOR E 1º CARACTER

1111

1111

1111

1101

DESLOCAMENTO 1

0111

1111

1111

1110

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1101

1111

1111

1111

DESLOCAMENTO 2

0110

1111

1111

1111

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1100

1111

1111

1110

DESLOCAMENTO 3

0110

0111

1111

1111

0

DESLOCAMENTO 4

0011

0011

1111

1111

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1001

0011

1111

1110

DESLOCAMENTO 5

0100

1001

1111

1111

0

DESLOCAMENTO 6

0010

0100

1111

1111

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1000

0100

1111

1110

DESLOCAMENTO 7

0100

0010

0111

1111

0

DESLOCAMENTO 8

0010

0001

0011

1111

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1000

0001

0011

1110

SOMAR COM O SEGUNDO BYTE

slide97

AÇÃO

1º BYTE

2º BYTE

FLAG

CONTEÚDO DO REGISTRADOR CRC (1° BYTE)

1000

0001

0011

1110

2º CARACTERE

0000

0000

0000

0111

XOR ENTRE REGISTRADOR E 2º CARACTER

1000

0001

0011

1001

DESLOCAMENTO 1

0100

0000

1001

1100

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1110

0000

1001

1101

DESLOCAMENTO 2

0111

0000

0100

1110

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1101

0000

0100

1111

DESLOCAMENTO 3

0110

1000

0010

0111

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1100

1000

0010

0110

DESLOCAMENTO 4

0110

0100

0001

0011

0

DESLOCAMENTO 5

0011

0010

0000

1001

1

FLAG=1, XOR COM POLINÔMIO

1010

0000

0000

0001

XOR

1001

0010

0000

1000

DESLOCAMENTO 6

0100

1001

0000

0100

0

DESLOCAMENTO 7

0010

0100

1000

0010

0

DESLOCAMENTO 8

0001

0010

0100

0001

0

CONTEÚDO DO REGISTRADOR CRC

1

2

4

1

CONTEÚDO DO CAMPO CRC NO QUADRO

4

1

1

2

modbus98
MODBUS
  • Cálculo do LRC
    • Endereço (12): 0001 0010
    • Função (01): 0000 0001
    • End. Inicial Hi (02): 0000 0010
    • End. Inicial Lo (10): 0001 0000
    • Quantidade Hi (00): 0000 0000
    • Quantidade Lo (01): 0000 0001
    • Checksum: 0010 0110
    • Complemento a 1: 1101 1001
    • Complemento a 2: 1101 1010
    • LRC (hexadecimal): D A
    • LRC (ASCII-binário): 0100 0100 0100 0001
modbus99
MODBUS
  • Características fixas:
    • Formato da mensagem
    • Funções disponíveis
    • Tratamento de erros
  • Características selecionáveis:
    • Meio de transmissão
    • Velocidade
    • Timeout
    • Bits de parada e de paridade
    • Modo de transmissão (RTU ou ASCII)
      • Define como os bits serão codificados
        • Endereço 3Bh no RTU: 0011 1011
        • Endereço 3Bh no ASCII: 3=33h – 0011 0011 e B=42h – 0100 0010
  • Nos Protocolos MODBUS Plus e MODBUS TCP/IP as mensagens são colocadas em frames e usa-se o modo de transmissão RTU
  • O tamanho da mensagem ASCII é duas vezes maior que a RTU
  • No modo RTU todos os caracteres devem ser enviados em uma sequência contínua
  • O modo RTU também é conhecido como MODBUS-B ou MODBUS Binário
modbus100

Nome do campo

Hexa

ASCII

RTU

Nome do campo

Hexa

ASCII

RTU

Cabeçalho

:

Nenhum

Cabeçalho

:

Nenhum

Endereço do escravo

06

06

0000 0110

Endereço do escravo

06

06

0000 0110

Código da função

03

03

0000 0011

Código da função

03

03

0000 0011

Quantidade de bytes

06

06

0000 0110

Endereço de início HI

00

00

0000 0000

Dado HI

02

02

0000 0010

Endereço de início LO

6B

6B

0110 1011

Dado LO

2B

2B

0010 1011

Número de registros HI

00

00

0000 0000

Dado HI

00

00

0000 0000

Número de registros LO

03

03

0000 0011

Dado LO

00

00

1 0000

Controle de erro

 CRC

LRC(2)

CRC(2)

Dado HI

00

00

2 0000

Trailer

CR LF

Nenhum

Dado LO

63

63

0110 0011

Controle de erro

 CRC

LRC(2)

CRC(2)

Trailer

CR LF

Nenhum

MODBUS
  • Exemplos de perguntas e respostas:
    • O mestre solicita uma leitura dos registradores 40108 a 40110 ao escravo 06
    • O dispositivo 06 responde com o conteúdo das três palavras
      • O 1º registrador é o 40001 que é endereçado como “0”, portanto o endereço do 40108 é 107d=006Bh
      • Registrador 40108 = 02 2Bh = 555
      • Registrador 40109 = 00 00h = 0
      • Registrador 40110 = 00 63h = 99
modbus101

Nome do campo

Hexa

RTU

Nome do campo

Hexa

RTU

Endereço do escravo

11

0001 0001

Endereço do escravo

11

0001 0001

Função

02

0000 0010

Função

02

0000 0010

Endereço de início HI

00

0000 0000

Contagem de bytes

03

0000 0011

Endereço de início LO

C4

1100 0100

Dado (10204 ... 10197)

AC

1010 1100

Número de registros HI

00

0000 0000

Dado (10212 ... 10205)

DB

1101 1011

Número de registros LO

16

0001 0110

Dado (10218 ... 10213)

35

0011 0101

Controle de erro

CRC

CRC

Controle de erro

CRC

CRC

MODBUS
  • Exemplos de perguntas e respostas:
    • O mestre solicita a leitura de algumas entradas digitais, no intervalo de endereço 10197 a 10218 ao dispositivo 17
    • O dispositivo cujo endereço é 17 responde ao mestre
modbus102
MODBUS
  • Exemplos de perguntas e respostas:
    • Requisição para ler os registros 108 a 110
modbus103
MODBUS
  • Exemplos de perguntas e respostas:
    • Requisição para ler a entrada do registro 9
    • Requisição para escrever o valor 00 03 no registro 2
modbus104

Nome do campo

Hexa

RTU

Nome do campo

Hexa

RTU

Endereço do escravo

11

0001 0001

Endereço do escravo

11

0001 0001

Função

05

0000 0101

Função

05

0000 0010

Endereço de início HI

00

0000 0000

Endereço solenóide HI

00

0000 0000

Endereço de início LO

AC

1010 1100

Endereço solenóide LO

AC

1010 1100

Endereço solenóide HI

00

0000 0000

Force dado HI

FF

1111 1111

Endereço solenóide LO

AC

1010 1100

Force dado LO

00

0000 0000

Force dado HI

FF

1111 1111

Controle de erro

CRC

CRC

Force dado LO

00

0000 0000

Controle de erro

CRC

CRC

MODBUS
  • Exemplos de perguntas e respostas:
    • O mestre solicita a escrita de um bit, valor 1, no endereço lógico 173 do escravo cujo endereço é 17
    • O dispositivo cujo endereço é 17 responde ao mestre
modbus tcp ip
MODBUS TCP/IP
  • Não há distinção entre mestre e escravo, então qualquer nó pode acessar qualquer nó
  • A mensagem é encapsulada em um pacote TCP/IP
  • Permite assim o acesso remoto via WEB
  • Os comandos são enviados por um cliente para a porta 502 de um servidor
  • O encapsulamento não alterou a estrutura básica da mensagem original Modbus
    • O endereço agora tem 1 byte e chama-se Identificador Único
    • O campo CRC não é usado
  • Usa o TCP na camada de transporte e o CSMA/CD como controle de acesso ao meio
modbus tcp ip106
MODBUS TCP/IP
  • O protocolo MODBUS define uma única PDU, independente do protocolo de comunicação
  • MBAP – Modbus Application Protocol
modbus tcp ip107
MODBUS TCP/IP
  • O formato e o conteúdo dos dados contidos em uma mensagem ModbusTCP/IP é identificado pelo campo código de função e seu valor é 91d (5Bh)
  • As transações entre nodos são associadas a request (código par) e response (código ímpar) ou notify para exceções
  • Estrutura do cabeçalho MBAP:
modbus tcp ip108
MODBUS TCP/IP
  • Estrutura do campo de dados:
modbus tcp ip109
MODBUS TCP/IP
  • Um esquema de endereçamento deve ser usado dentro do protocolo para providenciar a comunicação entre cliente/servidores
  • O endereço deve ser: IP+Unit ID
  • Unit ID válidos: faixa entre 0 e 247 (255 é usado para comunicação com um gateway)
  • Cada mensagem é constituída de um ou mais fragmentos de mensagem. O tamanho máximo de dados de cada fragmento é de 195 bytes
  • Cada fragmento contém 7 campos:
    • Byte 0 – Fragment Byte Count (8 bits):
      • contém o comprimento em bytes da mensagem Modbus. O máximo é 197 bytes, excluindo ele próprio e o Stuff
modbus tcp ip110
MODBUS TCP/IP
  • Byte 1 – Fragment In Process Indicator (1 bit):
    • Se =1 indica que o campo de dados é um fragmento de uma mensagem com multi-fragmentos
  • Byte 1 – Last Fragment Indicator (1 bit):
    • Se =1 indica que é o último fragmento da mensagem
  • Byte 1 – Reserved (3 bits):
    • Não usado e deve ser =0
  • Byte 1 – Fragment Sequence Number (3 bits):
    • Contador que indica o número sequencial do fragmento
  • Bytes 2 e 3 – Class ID (16 bits):
    • A classe do objeto é associada com o serviço. Em uma requisição de serviço a Class ID especifica o serviço a ser executado em uma determinado objeto
modbus tcp ip111
MODBUS TCP/IP
  • Bytes 4 e 5 – Instance ID (16 bits):
    • A instância do objeto é associada ao serviço
  • Bytes 6 e 7 – Service Code (16 bits):
    • O código especifica o serviço requisitado
  • Bytes 8 ... – Data (n*16 bits):
    • Dados associados aos serviço requisitado, isto é, parâmetros do serviço
  • Stuff Byte – Condicional (8 bits):
    • Se o comprimento do campo de dados não é múltiplo de 16, é necessário acrescentar esse byte ao final da mensagem
modbus tcp ip112
MODBUS TCP/IP

Protocolo de Endereçamento a Objeto do Modbus:

  • O Modelo do Objeto especifica o agrupamento, a estrutura e o comportamento dos dispositivos
  • Objetos são considerados entidades que agrupam estruturas e comportamentos de uma maneira lógica
  • Em um dispositivo, os objetos tem uma estrutura física ou conceitual análogas
  • Um objeto pode ser associado a um sensor em um dispositivo, ou pode ser o conjunto de estrutura e comportamento que compreende o gerenciamento do dispositivo
  • A hierarquia Classe/Instância é utilizada para suportar a herança, permitindo assim a definição do tipo do objeto (classe) e especificar as implementações desses objetos (instância)
  • Exemplo: em um banco de dispositivos fotodetectores a classe pode ser definida como “fotodetector” e a instância cada fotodetector individualmente
profibus
PROFIBUS
  • Principal sistema aberto para fieldbus
  • Baseado nos padrões:
    • EN 50170 e EN 50254
    • IEC 61158 e IEC 61784
  • Independência de fabricantes (dispositivos devem comunicar-se)
  • Utiliza o protocolo de acesso ao barramento token passing para comunicação entre os mestres (estações ativas), usando um anel lógico
  • E o procedimento mestre-escravo para comunicação entre o mestre e os escravos (estações passivas)
  • Atende vários níveis em sistemas de automação
profibus114
PROFIBUS
  • Protocolos de acesso
profibus116
PROFIBUS
  • No nível de sensores e atuadores permite interoperabilidade com:
    • RS-485, IEC 61158, fibra ótica e protocolo As-i
  • No nível de campo os protocolos Profibus-DP (Decentralized Periphery) e Profibus-PA (Process Automation) transmitem dados a partir de módulos de E/S, transdutores, acionamentos, etc
  • No nível de célula estão os CLP`s, PC`s, IHM. Podem comunicar-se entre si e entre os níveis acima e abaixo utilizando os protocolos Profibus-FMS (Fieldbus Message Specification) ou ProfiNet
  • O nível de célula troca informações com o nível de fábrica utilizando o Ethernet/TCP-IP
profibus121
PROFIBUS
  • Perfil de comunicação
profibus122
PROFIBUS
  • Tecnologias de transmissão:
    • RS-485 (Profibus-DP/FMS)
      • Cabo de par trançado, blindado ou não como barramento linear
      • Taxa de transmissão: 9,6 Kbps até 12 Mbps
      • Comunicação bilateral
      • 32 estações por segmento sem repetidores e até 127 estações com repetirodres
      • Conectores DB9
    • IEC 1158-2 (Profibus-PA)
      • Usado na indústria petroquímica/produtos químicos
      • Corrente de modulação de no mínimo 10 mA
      • Transmissão digital, com sincronismo bit a bit
      • Taxa de transmissão: 31,25 Kbps
      • Cabo de par trançado, blindado ou não como barramento linear
      • 32 estações por segmento (pode usar repetidores)
profibus123
PROFIBUS
  • Tecnologias de transmissão:
    • Fibra ótica
      • Usado em ambientes ruidosos e com interferência eletromagnética muito elevada, aumentar a distância máxima e elevadas taxa de transmissão
      • Fibra multimodo: 2 a 3 km
      • Fibra monomodo: até 15 km
      • Existem conversosres RS-485/Fibra
profibus124
PROFIBUS
  • Detalhamento da Arquitetura Básica de uma Instalação
profibus125
PROFIBUS
  • Arquiteturas
profibus126
PROFIBUS
  • Arquiteturas:
    • Profibus-DP
      • Automação de chão de fábrica (nível de dispositivo: CLP com drivers, válvulas, I/O, etc)
      • Usa as camadas 1 e 2 (FDL – Field Data Link) do MR-OSI e a interface com o usuário
      • O acesso à camada 2 é feito pelo protocolo DDLM – Direct Data Link Mapper
      • Funções básicas:
        • Tecnologia de transmissão:
          • RS-485 ou fibra ótica
          • Taxa de transmissão de 9,6 Kbps a 12 Mbps
        • Acesso ao barramento:
          • Procedimento mestre-mestre e mestre-escravo
          • Possibilidade de sistemas mono-mestre ou multi-mestre
          • Máximo de 126 estações por barramento
profibus127
PROFIBUS
  • Arquiteturas:
    • Profibus-DP
      • Funções básicas:
        • Comunicações:
          • Ponto-a-ponto ou multicast (comandos de controle)
          • Mestre-escravo cíclica e mestre-mestre acíclica
        • Modos de operação:
          • Operate – transmissão cíclica de dados de E/S
          • Clear – as entradas são lidas e as saídas são colocadas num status à prova de falhas
          • Stop – somente transmissões mestre-mestre são permitidas
        • Sincronização:
          • Comandos de controle realizam as sincronizações nas entradas e saídas
          • Modo síncrono – as saídas são sincronizadas
          • Freeze mode – as entradas são sincronizadas
profibus128
PROFIBUS
  • Arquiteturas:
    • Profibus-PA
      • Solução Profibus para automação de processos
      • Conecta sistemas de automação e de controle de processos com os dispositivos de controle (controladores de pressão, controladores de temperatura e posicionadores de válvulas)
      • Pode ser usado como um substituto para a tecnologia analógica (4 a 20 mA)
      • Utiliza as mesmas funções básicas do Profibus-DP
      • Satisfaz as exigências da indústria de controle e processos:
        • O perfil original da aplicação para a automação do processo e interoperabilidade dos equipamentos de campo dos diferentes fabricantes
        • Adição e remoção de estações de barramentos, mesmo em áreas intrinsecamente seguras, sem influência pra outras estações
        • Comunicação transparente através dos acopladores do segmento entre o barramento de automação do processo Profibus-PA e do barramento de automação industrial Profibus-DP
        • Alimentação remota e transmissão de dados sobre o mesmo par de fios baseado na tecnologia IEC 1158-2
        • Uso em área potencialmente explosivas com blindagem explosiva tipo “intrinsecamente segura”
profibus129
PROFIBUS
  • Arquiteturas:
    • Profibus-FMS
      • Os CLP`s estão no mesmo nível e a comunicação é feita entre eles
      • Neste nível um elevado grau de funcionalidades é mais importante do que o tempo de resposta
        • Serviços disponíveis:
          • Estabilizar conectores lógicos (context management)
          • Leitura e escrita de variáveis (variable access)
          • Carrega áreas de memórias lidas (domain management)
          • Conexões mestre-mestre
          • Conexões mestre-escravo para transmissões cíclicas e acíclicas
profibus131
PROFIBUS
  • Implementação de escravo Profibus com interface IEC 1158-2
profibus132
PROFIBUS
  • Novos desenvolvimentos técnicos
profibus133
PROFIBUS
  • Smar Equipamentos Industriais Ltda
foundation
FOUNDATION
  • Surgiu como mais uma proposta de padronização de protocolos, patrocinada pela WorldFIP (World Factory Instrumentation Protocol) e ISP (Interoperable Systems Project)
  • Plantas industriais e químicas
  • Participa da ISA/IEC SP50
  • O protocolo Foundation Fieldbus especifica as camadas física, enlace e aplicação, do RM-OSI mais a camada de usuário
foundation136
FOUNDATION
  • Redução do hardware
foundation137
FOUNDATION
  • Economia de instalação
foundation138
FOUNDATION
  • Múltiplas variáveis, ambas direções
foundation139
FOUNDATION
  • RM-OSI e Fieldbus Foundation
foundation140
FOUNDATION
  • Encapsulamento dos protocolos
foundation141
FOUNDATION
  • Camada física:
    • Utiliza apenas par trançado
    • Especifica duas taxas de transmissão:
      • H2 – (higher-speed fieldbus), utiliza 1,0 e 2,5 Mbps (interliga equipamentos de usuário (PCs, etc) e dispositivos mais rápidos do chão de fábrica)
      • H1 – (lower-speed fieldbus), utiliza 31,25 Kbps (interliga dispositivos mais lentos de chão de fábrica podendo operar nas mesmas instalações do padrão 4-20 mA)
    • Permite o uso de até 32 dispositivos conectados ao barramento
    • O tamanho do cabo é função da qualidade do mesmo:
      • Tipo 31,25 Kbps 1 Mbps 2,5 Mbps Comentários
      • "A“ 1900 m 750 m 500 m apenas 1 par-trançado em um cabo blindado
      • "B“ 1200 m - - múltiplos pares trançados com uma blindagem externa
      • "C“ 400 m - - um ou vários pares trançados, mas sem blindagem
      • "D“ 200 m - - múltiplos condutores sem ser par-trançado
foundation142
FOUNDATION
  • Codificação dos bits
foundation143
FOUNDATION
  • Preâmbulo e delimitadores de início e fim
foundation144
FOUNDATION
  • Instalação elétrica
foundation145
FOUNDATION
  • Interligação com redes de alta velocidade
foundation146
FOUNDATION
  • Grandes redes
foundation147
FOUNDATION
  • Camada de enlace de dados
    • O acesso ao fieldbus é gerenciado por um escalonador de barramento centralizado e determinístico, o LAS (Link Active Scheduler)
    • O padrão estabelece 2 tipos de dispositivos:
      • LinkMaster: é o LAS, podendo controlar as comunicações no barramento (mestre)
      • Basic: são todos os outros dispositivos (escravos)
    • Na configuração do fieldbus, a estação LAS recebe uma lista de todos os dispositivos no barramento, quais dados devem ser disponibilizados por cada um e a que instante (mensagens escalonadas)
    • LAS redundantes podem ser incluídos para garantir a operação contínua da rede
foundation148
FOUNDATION
  • Dispositivos do Fieldbus Foundation
foundation149
FOUNDATION
  • No momento agendado, o LAS emite uma mensagem de dados compilados (CD) para cada dispositivo
  • O dispositivo endereçado (editor) coloca seus dados no barramento (broadcast)
  • Os dispositivos configurados para receber os dados (assinante) irão recebê-los simultaneamente
  • Transferência de dados agendados são tipicamente usadas para regular a transferência cíclica de dados da malha de controle entre os dispositivos e o fieldbus
  • Para os outros tipos de mensagens, as não-escalonadas, tais como os pedidos eventuais de dados e alarmes, o LAS deve deixar espaços vagos no escalonamento para poder atender a esses pedidos
foundation150
FOUNDATION
  • Transferência agendada de dados

CD (a)

LAS

foundation151
FOUNDATION
  • Transferência não agendada de dados
foundation152
FOUNDATION
  • Camada de Aplicação
    • É de interesse principalmente de desenvolvedores
    • Permite a comunicação entre dispositivos através de uma interface padronizada (por meio de nomes, índices e/ou endereços reunidos num dicionário de objetos)
  • Camada de Usuário
    • Realiza o gerenciamento da rede (configuração do LAS, monitoramento), o gerenciamento do sistema (clock, endereços, etc.) e suporta a aplicação do usuário (blocos ou objetos que dão a funcionalidade da aplicação)
    • O Fieldbus Foundation tem a vantagem de utilizar um device description (DD) para cada dispositivo. Esta descrição serve como se fosse um driver, fornecendo todas as opções de atuação e comunicação do mesmo. Com isso, pode-se, numa mesma rede, substituir e misturar dispositivos de fabricantes diferentes mas de mesma funcionalidade, sem nenhum problema de comunicação e de forma transparente para o usuário (interoperabilidade)
foundation153
FOUNDATION
  • As conexões Fieldbus Foudation convergem para um só ponto
foundation154
FOUNDATION
  • ControlNet & Fieldebus
foundation155
FOUNDATION
  • Arquitetura integrada
refer ncias bibliogr ficas
Referências bibliográficas
  • M. R. Stemmer, LCMI/DAS/UFSC