1 / 4

Die Quadratische Funktion Der Zusammenhang zwischen Schaubild und Funktionsgleichung

Die Quadratische Funktion Der Zusammenhang zwischen Schaubild und Funktionsgleichung. Die einfachste Funktionsgleichung lautet y = x². Ihr Schaubild ist die Normalparabel. Die Normalparabel hat ihren tiefsten Punkt im Scheitel S =( 0 ; 0 ).

hollis
Download Presentation

Die Quadratische Funktion Der Zusammenhang zwischen Schaubild und Funktionsgleichung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Die Quadratische Funktion Der Zusammenhang zwischen Schaubild und Funktionsgleichung Die einfachste Funktionsgleichung lautet y = x². Ihr Schaubild ist die Normalparabel. Die Normalparabel hat ihren tiefsten Punkt im Scheitel S =( 0 ; 0 ) Die Normalparabel ist symmetrisch zur y –Achse. S = (0;0)

  2. Die verschobene Normalparabel Man erkennt die Verschiebung der Normalparabelentlang der y – Achse anhand des „Parameters“ c. Die Scheitelform der Funktionsgleichung lautet: y = x ² + c Beispiel 1: Für c = 2 gilt y = x² + 2 Die Parabel ist um 2 LE nach oben verschoben S = ( 0 ; 2 ) Beispiel 2: Für c = -3 gilt y = x² - 3 Die Parabel ist um 3 LE nach unten verschoben S = ( 0 ; -3 ) S = (0;2) S = (0;-3)

  3. Die verschobene Normalparabel Man erkennt die Verschiebung der Normalparabelentlang der x – Achse anhand des „Parameters“ d. Die Scheitelform der Funktionsgleichung lautet: y = (x – d )² Beispiel 1: Für d = +2 gilty = (x – 2 )² Die Parabel ist um 2 LE nach rechts verschoben. S = ( 2 ; 0 ) Beispiel 2: Für d = -3 gilty = (x – -3 )² y = (x + 3 )² Die Parabel ist um 3 LE nach links verschoben. S = ( -3 ; 0 ) Achtung! Ist d negativ steht in der Klammer ein Plus. Die Verschiebung geht nach links. S = (-3;0) S = (2;0)

  4. Die verschobene Normalparabel Man erkennt die „Lage“ einer verschobenen Normalparabel anhand der „Parameter“ c und d. Die Scheitelform der Funktionsgleichung lautet: y = (x – d )² + c An dem Wert für c erkennt man die Verschiebung entlang der y Achse An dem Wert für d erkennt man die Verschiebung entlang der x Achse Eine Parabel mit der Funktionsgleichung y = ( x – 2 )² - 3 Ist um 2 LE nach rechts und um 3 LE nach unten verschoben. S = ( 2 ; -3 )

More Related