PROGRAMAÇÃO LINEAR - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
PROGRAMAÇÃO LINEAR PowerPoint Presentation
Download Presentation
PROGRAMAÇÃO LINEAR

play fullscreen
1 / 39
PROGRAMAÇÃO LINEAR
158 Views
Download Presentation
helene
Download Presentation

PROGRAMAÇÃO LINEAR

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. PROGRAMAÇÃO LINEAR

  2. HISTÓRIA DA PROGRAMAÇÃO LINEAR Tem as suas raízes na antiguidade clássica 1759 – Quesnay (1ª tentativa de modelizar a economia) 1936 – Leontief (2º marco para a economia americana ) 1937 – Von Neumann (modelo de programação linear dinâmico) 1939 – Kantorovich (forma rigorosa de um problema de PL) 1947 – Dantzig (forma sistemática da resolução dos problemas de PL) - “Método Simplex”-

  3. O que é a Programação Linear? A Programação Linear consiste em optimizar (maximizar ou minimizar) uma dada função linear, que se chama função objectivo, definida num dado conjunto convexo, tendo em conta que as variáveis estão sujeitas a restrições.

  4. Utilização da Programação Linear Planos de produção e armazenamento Obtenção de misturas óptimas Composição de medicamentos Rentabilização de aeroportos Optimização do tráfego interno Programação de rádio ou televisão Estratégias militares

  5. A formulação do problema deve consistir em : • Identificação das variáveis de decisão • Identificação da função objectivo • Identificação das restrições • Verificação dos axiomas de linearidade • Formulação matemática

  6. ALGORITMO • Uma expressão como ax+by define uma função linear a duas variáveis também chamada «forma linear». • Igualando-a a uma constante obtemos a equação duma recta; - se a constante for zero, temos uma recta que passa na origem: ax + by = 0  y = - (a/b)x cujo gráfico será P (x, y)

  7. - em qualquer ponto P (x, y) desta recta, a expressão ax + by toma o valor 0; - diz-se «recta de nível 0» da forma ax + by. • Igualando a expressão ax + by a uma constante diferente de 0, obtemos outra recta que não passa na origem, mas é paralela à anterior visto que tem o mesmo declive: ax + by = c  by = -ax + c  y = - (a/b)x + (c/b) (c/b) = k (constante) • Concretizando os valores a e b (a = 3 , b = 1) e fazendo variar o k obtém-se o gráfico seguinte:

  8. A recta de equação 3x + y = k diz-se recta de nível k da forma linear 3x + y e em qualquer dos seus pontos a expressão 3x + y toma o valor k.

  9. As restrições do problema originam um polígono – polígono de soluções. Num problema de maximização: - procura-se a recta de maior nível que toque pelo menos num ponto do polígono de soluções. Num problema de minimização: - procura-se a recta de menor nível que toque pelo menos num ponto do polígono de soluções.

  10. PROBLEMA DE MAXIMIZAÇÃO Uma empresa de telecomunicações pretende lançar no mercado uma rede móvel. Precisa, para o efeito de definir o tarifário das suas chamadas. A tarifação será efectuada ao minuto e as chamadas vão ser cobradas de acordo com o seu destino, havendo uma tarifa para as chamadas efectuadas para a mesma rede e outra para as chamadas efectuadas para as outras redes. O instituto responsável pelas comunicações definiu que a soma do preço de um minuto de chamada para a mesma rede com o preço de um minuto de chamada para outra rede não pode ser superior a 0,40 €.

  11. Estudos efectuados em operadoras já existentes mostram que em média cada cliente fala para a mesma rede 100 minutos por mês, e para as outras redes 30 minutos por mês. Cada cliente terá que efectuar um pagamento de 15€ mensais, sendo esse o saldo disponível para efectuar as chamadas, podendo no entanto pagar um valor mais elevado no caso de querer dispor de um saldo maior. Sobre tarifa cobrada a empresa obtém 70% de lucro nas chamadas efectuadas para a mesma rede e 40% nas chamadas efectuadas para as outras redes. Como deverá a empresa cobrar as tarifas de forma a obter o maior lucro possível?

  12. RESOLUÇÃO

  13. A função linear a maximizar é o preço total por minuto das chamadas em euros: • 0,7x + 0,4y • Restrições: • Tem que se definir os preços para as duas tarifas: • x ≥ 0 e y ≥ 0 • A soma por minuto das duas tarifas tem que ser inferior a 0,40€: x + y ≤ 0,40 • O dinheiro gasto por mês não pode exceder 15€: • 100x + 30y ≤ 15

  14. GÁFICO DA REGIÃO ADMISSÍVEL

  15. Qualquer ponto da região a verde satisfaz as várias restrições, logo é uma solução possível. (0,07 ; 0,20) é uma solução para a qual o lucro seria 0,7 ×0,07 + 0,4 × 0,20 = 0,129€ por minuto (0,09 ; 0,18) é mais lucrativo, visto que 0,7 × 0,09 + 0,4 × 0,18 = 0,135€ por minuto. Qual é então o ponto que dá maior lucro? Para o calcular, representa-se a recta de nível 0 da função objectivo, que é o “ lucro” a maximizar 0,7 x + 0,4 y = 0 <=> y = - 1,75 x

  16. GRÁFICO DA RECTA DE NÍVEL ZERO Procura-se a recta de maior nível (isto é, a paralela mais para a direita) que toque pelo menos num ponto da região admissível.

  17. GRÁFICO DAS RECTAS DE NÍVEL K

  18. GRÁFICO DA SOLUÇÃO ÓPTIMA

  19. Vemos que a solução óptima corresponde ao ponto de intersecção de duas rectas, o qual se obtém resolvendo o sistema: x + y = 0,40 x = 0,043  100x + 30y = 15 y = 0,357 Para esta solução o lucro será de 0,7 × 0,043 + 0,4 × 0,357 = 0,173€

  20. Problema de Minimização Uma empresa de refrigerantes pretende produzir um novo sumo. Esse novo sumo será uma mistura de sumo de laranja, sumo de maracujá e água. Cada litro de sumo de laranja contém um grama de carbonatos, três gramas de proteínas e três gramas de vitaminas; cada litro de sumo de maracujá contém três gramas de carbonatos, uma de proteínas e quatro de vitaminas. O preço por litro de sumo de laranja é 1€ e de sumo de maracujá é 0,75€ (o preço da água é desprezável). Cada litro do novo sumo deverá conter a quantidade mínima de uma grama e meia de carbonatos, uma e meia de proteínas e três de vitaminas. Qual a forma mais económica da empresa misturar os dois sumos, garantindo os mínimos exigidos?

  21. RESOLUÇÃO

  22. A função linear a minimizar é a despesa de fabrico do sumo: • x + 0,75 y • Restrições: • Carbonatos: x + 3y 1,5 • Vitaminas : 3x + 4y 3 • Proteínas : 3x + y  1,5 • Para usar laranja e maracujá: x  0 e y  0

  23. GRÁFICO DA REGIÃO ADMISSÍVEL

  24. GRÁFICO DA SOLUÇÃO ÓPTIMA

  25. 3x + y = 1,5 3x + 4y = 3 y = 0,5 Vemos que a solução óptima corresponde ao ponto de intersecção de duas rectas, o qual se obtém resolvendo o sistema: x = 0,33  Para esta solução a despesa por litro de sumo é de: 0,33 + 0,75 × 0,5 = 0,71€

  26. Casos particulares 1º Caso: solução não limitada Maximizar z = 2x + 3y Sujeito a: 2x + 2y ≥ 6 - x + y ≤ 1 y ≤ 3 x, y ≥ 0

  27. 2º Caso: solução óptima com conjunto das soluções admissíveis não limitado. Maximizar z = -x + 3y Sujeito a: 2x + 2y ≥ 6 - x + y≤ 1 y ≤ 3 x, y ≥ 0

  28. 3º Caso: valor óptimo da FO finito com variáveis podendo assumir valores arbitrariamente grandes Maximizar z = -2x + 4y Sujeito a: x - 2y ≥ -4 - x+ y ≤ 1 x, y ≥ 0

  29. 4º Caso: problema impossível Maximizar z = x + 2y Sujeito a: x + y ≥ 3 2 x + y ≤ 2 x, y ≥ 0

  30. MÉTODO SIMPLEX O Método Simplex é um processo algébrico que permite resolver problemas de programação linear, isto é, determina uma solução óptima finita quando esta existe ou conclui que o problema de optimização é impossível ou ilimitado. Caso a solução óptima exista, o Método Simplex localiza-a após pesquisar um número finito de soluções.

  31. O problema escrito na forma padrão max z = c1 x1 + c2 x2 + … + cn xn a11 x1 + a12 x2 + ... +a1n xn + xn+1 = b1 a21 x1 + a22 x2 + ... + a2n xn + xn+2 = b2 am1 x1+ am2 x2+ ... +amn xn + xn+m = bm xj ≥ 0; j = 1, 2, ..., n+m Quadro simplex

  32. PROBLEMA Ao exemplo dado de maximização separa-se a rede fixa das outras redes. Reestruturando o problema vem: Uma empresa de telecomunicações pretende lançar no mercado uma rede móvel. Precisa, para o efeito de definir o tarifário das suas chamadas. A tarifação será efectuada ao minuto e as chamadas vão ser cobradas de acordo com o seu destino, havendo uma tarifa para as chamadas efectuadas para a mesma rede, outra para as chamadas efectuadas para as outras redes móveis e rede fixa.

  33. O instituto responsável pelas comunicações definiu que a soma do preço de um minuto de chamada para a mesma rede com o preço de um minuto de chamada para outras redes móveis não pode ser superior a 0,40€, e que a soma do preço de um minuto de chamada para a mesma rede com o preço de um minuto de chamada para outras redes móveis e com o preço de um minuto de chamadas para a rede fixa não pode ser superior a 0,55€.

  34. Estudos efectuados em operadoras já existentes mostram que em média cada cliente fala para a mesma rede 100 minutos por mês, para as outras redes móveis 30 minutos por mês, e para a rede fixa 20 minutos por mês. Cada cliente terá que efectuar um pagamento de 15€ mensais, sendo esse o saldo disponível para efectuar as chamadas, podendo no entanto pagar um valor mais elevado no caso de querer dispor de um saldo maior.

  35. Agora a função a maximizar é Z=0,7X1+0,4X2+0,45X3 X1: chamadas para a mesma rede. X2: chamadas para outras redes móveis. X3: chamadas para a rede fixa. s.a: X1 + X2 ≤ 0,4 X1 + X2 + X3 ≤ 0,55 100X1 + 30X2 + 20X3 ≤ 15 Xj ≥ 0 , j = 1, 2, 3

  36. 1º Quadro simplex A primeira solução básica admissível é X1 = 0, X2 = 0, X3 = 0, X4 = 0,55, X5 = 15, X6 = 0,4 onde X1, X2, X3 são as variáveis não básicas e X4, X5, X6 são as variáveis básicas. Verificamos que esta solução não é óptima, visto que existem custos reduzidos negativos, -0,7; -0,4 e -0,45. A variável a entrar na base é X1, porque entre as variáveis não básicas com custo reduzido negativo, X1 é a que tem menor valor. A variável de saída é X5, o min {0,55/1; 15/100; 0,4/1} corresponde à linha definida pela variável básica X5. O pivot neste caso é 100.

  37. 1ª actualização do quadro simplex L1 → L1 – (1/100) L2 L2 → (1/100) L2 L3 → L3 – (1/100) L2 L4 → L4 + (7/1000) L2 Obtemos uma nova solução básica admissível, X1 = 0,15; X2 = 0; X3 = 0; X4 = 0,4; X5 = 0; X6 = 0,25, esta solução não é óptima porque existem custos reduzidos negativos. A variável a entrar na nova base é X3. A variável de saída é X4, porque o min {0,4/0,8; 0,15/0,2} corresponde à linha definida pela variável X4. O novo pivot é 0,8.

  38. Nova actualização do quadro simplex L1 → (5/4) L1 L2 → L2 – (1/4) L1 L3 → L3 + (1/4) L1 L4 → L4 + (31/80) L1 A nova solução básica admissível é X1 = 0,05; X2 = 0; X3 = 0,5; X4 = 0; X5 = 0; X6 = 0,35, uma vez que neste último quadro não existem custos reduzidos negativos, esta solução é óptima. Sendo o valor máximo da função objectivo 0,26€.

  39. Este trabalho foi elaborado por: Ana Cristina Gomes Filipe Marques Oliveira Pedro Nuno Silva Nuno Fortunato Santos FIM