1 / 34

Journ é e th é matique DAPNIA «Almants supraconducteurs » High Temperature Superconductivity (HTS) Opportunities &

Journ é e th é matique DAPNIA «Almants supraconducteurs » High Temperature Superconductivity (HTS) Opportunities & Challenges ; R&D Activities in the US Yukikazu IWASA Francis Bitter Magnet Laboratory Massachusetts Institute of Technology Cambridge, MA 02139-4208

hali
Download Presentation

Journ é e th é matique DAPNIA «Almants supraconducteurs » High Temperature Superconductivity (HTS) Opportunities &

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Journée thématique DAPNIA «Almants supraconducteurs» High Temperature Superconductivity (HTS) Opportunities &Challenges; R&D Activities in the US Yukikazu IWASA Francis Bitter Magnet Laboratory Massachusetts Institute of Technology Cambridge, MA 02139-4208 Orme des Merisiers, Bât. 774, Amphi Bloch, Saclay lundi 3 juillet 2006 DAPNIA Day  HTS Saclay (03/07/2006)

  2. Outline • Review of LTS & HTS Characteristics • HTS Current Status (Bi-2223; Bi-2212; YBCO; MgB2) • Key issues • Opportunities • HTSR&DActivities in the US • Challenges • Important Activities for HTS • Market Penetrationfor HTS • Conclusions DAPNIA Day  HTS Saclay (03/07/2006)

  3. YBCO OXIDE 150 (n=2) OXIDES (n=3) Bi-2212 Bi2Sr2Can-1CunO2n+4: (BSCCO) Bi-2223 100 oHc2[T] COMPOUND MgB2 50 Nb3Sn COMPOUND Nb-Ti ALLOY 0 020 406080100 110 Tc[K] oHc2vs.Tc Plots for LTS & HTS DAPNIA Day  HTS Saclay (03/07/2006)

  4. YBCO (4.2;75) Useful range for magnet Bi-2212 (4.2) Bi-2223 (4.2; 20) Nb3Al ( 4.2) MgB2 (4.2;20) Nb-Ti (1.8; 4.2) Nb3Sn (1.8; 4.2) Jc Data: LTS @4.2 K HTS@4.2 K & Above 105 104 103 Jc[A/mm2] 102 10 0 5 15 20 25 30 10 B [T] [Based on graph by P. Lee (12/2002; UW)] DAPNIA Day  HTS Saclay (03/07/2006)

  5. 50 YBCO Bi-2223/2212 40 MgB2 30 Nb3Sn Bcenter[T] Nb-Ti 20 10 0 0 10 20 304050 60708090100 Top[K] Bcenter vs TopZones for LTS & HTS Magnets HTS Opportunities:higher fieldsover wider Toprange DAPNIA Day  HTS Saclay (03/07/2006)

  6. Sumitomo Electric Bi-2223 4.2 mm 0.22 • Difficult to reduce AC losses suitable for DC coils [T. Kato (Sumitomo) (2006)] • “Pancake” coils rather than “layered” coils many joints • “large” radial gaps needed in multi-coil inserts HTS Current Status Bi-2223  Available NOW as “magnet grade conductor”  Only as TAPE DAPNIA Day  HTS Saclay (03/07/2006)

  7.  Available in WIRE form NEXANS Bi-2212 Wire • Easier to minimize AC losses • “Layered” coils Suitable for multi-coil “inserts” 0.8 mm 18 sub-element each of 37 filaments [Jean-Michel Rey (2006)] HTS Current Status (continuation) Bi-2212 Still under development DAPNIA Day  HTS Saclay (03/07/2006)

  8. YBCO  Usable at LN2 temperatures (>64 K)  Only as TAPE same negative points as Bi-2223 • Even AFTER MORE THAN 10 years, still the longest • available ~100 m HTS Current Status (continuation) • Considered by many that YBCO less expensive than Bi-2212/2223low materials costs, e.g., no Ag DAPNIA Day  HTS Saclay (03/07/2006)

  9. Jc(>10 K) still much less than Nb-Ti’s (@4.2 K) • More brittle than Nb-Ti 0.87 mm 36-filament wire MgB2 Nb barrier Cu [Mike Tomsic (Hyper Tech) (2006)] HTS  Current Status (continuation) MgB2  Available as WIRE  same positive points as Bi-2212 Considered by many to be price-competitive against Nb-Ti DAPNIA Day  HTS Saclay (03/07/2006)

  10. Difficulty or Cost Protection Conductor • Mechanical • Stability • Cryogenics Top[K] 0 ~100 Range of Operation forHTSMagnets Range of Operation forLTS Magnets Key Magnet Issues vs. Top DAPNIA Day  HTS Saclay (03/07/2006)

  11. Opportunities Stability • HTS magnets VERY stable  immune from disturbances, • e.g., mechanical, that still afflict LTS magnets → higher J • ALL HTS magnets should be “adiabatic’’  Saving in production cost • Unnecessary to epoxy-impregnate HTS windings?  Saving in production cost DAPNIA Day  HTS Saclay (03/07/2006)

  12. 2. “Large” temperature margins for HTS magnets • [dT/dt  0]LTSnot mandatory for HTS magnets • ONE serious disadvantage for dry magnets: • Nearly ZERO thermal mass for the cold body Opportunities (continuation) • ALLHTS magnets, except those combined with LTS magnets, • should be dry, cryocooled!  the presence of liquid cryogen in the systemtends to make cryogenics too “visible” to the user • TWO reasons why LHeNOT needed: 1. HTS magnetsCAN operate well above LHe temperatures • ENTER:solid-cryogen-cryocooled “dry” HTS magnets DAPNIA Day  HTS Saclay (03/07/2006)

  13. 2.0 Phase transition (35.6 K): 8.3 J/cm2 Ag SNe Cu Pb 1.5 SNe SN2 SN2 Pb 1.0 Cp[J/cm3 K] Ag Cu 0.5 0 20 30 40 50 60 0 10 Llv = 2.56 J/cm3 for LHe T [K] Cp(T) Plots DAPNIA Day  HTS Saclay (03/07/2006)

  14. Opportunities (coontinuation) • When MgB2can replace Nb-Ti, and Bi-2212/2223and/or • YBCOcan replaceNb3Sn, it should be possible to make • magnets  NMR/MRI; HEP; even FUSIONentirelyof • cryocooled HTS operating >10 K, with ZERO possibility of • quenches • “Dry” magnet tends to make cryogenics “invisible” DAPNIA Day  HTS Saclay (03/07/2006)

  15. Opportunities for LTS & HTS Magnets: Present & Future LTS (marketplace); HTS (R&D) Medical MRI LTS (marketplace); HTS (R&D) Magnetic Separation Crystal (Si) grower LTS (marketplace); HTS (R&D) • DC or ~DC • LTS: present • HTS: future RESEARCH MAGNET LTS (marketplace); HTS (R&D) LTS (marketplace); HTS (R&D) NMR/MRI DC field LTS (“Teva;” LHC); HTS (R&D) HEP Electric Power  Conversion & Storage LTS (TORE SUPRA; ITER); HTS (R&D) Fusion Generator SME Flywheel LTS (R&D); HTS (R&D) LTS (R&D); HTS (R&D) HTS bulk disk (R&D) • DC or ~DC • LTS:proven • HTS: better? Electric Power  Distribution Transmission Transformer Fault current limiter HTS (R&D) HTS (R&D) HTS (R&D) • AC or DC • Hope hinges • on HTS Electric Power  End Use HTS (R&D) Motor MAGLEV LTS (R&D); HTS (R&D) Applications Current Status DAPNIA Day  HTS Saclay (03/07/2006)

  16. Sponsor Principal Areas Budget DOE 1) HTS electric power devices; 2) YBCO ~$40M/Y Air Force YBCO ~$10M/Y Navy Synchronous motors (Bi-2223) for ship propulsion $80M [a] NSF [b] Operates the NHMFL national facilities ~$25M/Y NIH [c] Pays for many LTS NMR & MRI magnets [d] [a] Total for two motors, 5MW (2003) & 36.5MW (2006) [b] National Science Foundation [c] National Institutes of Health [d] Supports, among others, four HTS NMR/MRI magnet projects currently at MIT HTSR&DActivities in the US • Nearly ALL US superconductivity R&D activities on HTS • Major federal government HTS R&D activities targeted to • devices (electric utilities & military) and YBCO (lightweight magnets; protection) DAPNIA Day  HTS Saclay (03/07/2006)

  17. Based entirely on LTS • 1 GHz NRIM (Japan) • 1 GHz Oxford Instruments Based on LTS/HTS • 1 GHz:MIT (Bi-2223) • 1.2 GHz: Grenoble/Saclay (Bi-2212) • 1.3 GHz: NHMFL (Bi-2212) Opportunities (continuation) Selected1-GHz NMR Magnet Projects DAPNIA Day  HTS Saclay (03/07/2006)

  18. 600 LTS (Nb-Ti/Nb3Sn @4.2 K) 140-mm COLD bore 100 HTS (Bi-2223 @4.2 K) 40 Double Pancake Coils 55-mm RT bore Bi-2223-Tape Double Pancake Coil 401.6 126.5 78.2 [JASTEC] 3-Phase MIT 1-GHzLTS/HTS NMR Magnet Project* Phase 2 (2003-2007): 700 MHz 600 MHz/100 MHz/55 mm RT bore * A US HTS activity (supported by NIH) DAPNIA Day  HTS Saclay (03/07/2006)

  19. Nb-Ti Nb3Sn 760 LTS (Nb-Ti/Nb3Sn @4.2 K) 175-mm COLD bore Bi-2223 240 HTS (Bi-2223 @4.2 K) 63-mm RT bore 64 Double-Pancake Coils 87 175 [JASTEC (2005)] 3-Phase MIT 1-GHzLTS/HTS NMR Magnet Project (cont.) Phase 3 (2008-20011)*: 1 GHz 760 MHz/240 MHz/63 mm RT bore * NIH yet to approve Phase 3 DAPNIA Day  HTS Saclay (03/07/2006)

  20. 850 (20 T)/20 MW Cu Magnet (Grenoble) 3-Coil HTS (Bi-2212) Insert (Saclay) 136 160 [Jean-Michel Rey (2006)] Grenoble/Saclay 1.2-GHzLTS/HTS NMR Magnet Project Phase 1: 850 Cu/350 HTS DAPNIA Day  HTS Saclay (03/07/2006)

  21. Bo [T] 1.2 28 Grenoble/ Saclay? 26 24 1000 1 950 930 22 MIT? : SUPERCONDUCTING—LTS/HTS [GHz] 900 20 : SUPERCONDUCTING—LTS [MHz] 800 18 : NON-SUPERCONDUCTING [MHz] 750 16 14 MIT 600 12 MIT 500 10 360 8 270 6 220 200 4 100 60 40 2 YEAR 30 0 50 54 58 62 66 70 74 78 82 86 90 94 98 02 08 06 12 14 10 [Based on Kobe Steel data (1998)] March Towards 1 GHz & 1.2 GHz DAPNIA Day  HTS Saclay (03/07/2006)

  22. Challenges Conductor • Develop “long” (~10 km) conductors • ReduceAC losses in Bi-2223 & YBCO (tapes) • Reduceprice/performance ($/kA m) For NMR/MRI magnets • Developsuperconducting joints DAPNIA Day  HTS Saclay (03/07/2006)

  23. $1/kA m 105 ITER Nb3Sn (5.5 K; 13 T)  104 MgB2 (2008-2010) (20 K; 2 T.) Nb-Ti (4.2K; 6T)  103 I [A] YBCO (2008-2010) (77.3 K; s.f.) Nb3Sn Tape (10 K; 1 T)  Bi-2223 (2006) (77.3 K; s.f.)  100 $2-5/kA m 10 0.1 1 10,000 1,000 10 100 $200/kA m $100/kA m Price [$/m] $10/kA m Current-Carrying Capacity vs. Price/Length Plots DAPNIA Day  HTS Saclay (03/07/2006)

  24. QRT/Qopvs. Topfor Selected Qop 10000 1 W 10 W 1000 100 W 1 kW 100 kW QRT/Qop 100 10 CARNOT 1 20 40 10 30 0 50 60 70 80 Top[K] Challenges (continuation) Cryogenics • Easier for HTS than for LTS, butits ratio of compressor power • QRTto refrigeration power at Top, Qop , needs MUCH(QRT/Qop ) DAPNIA Day  HTS Saclay (03/07/2006)

  25. Qop 1 W 100 W 1 kW 10 kW QRT/Qop Top [K] 4.2 10 20 30 50 77 8000 1650 600 350 120 55 1500 500 220 110 50 22 850 380 140 70 30 15 400 180 75 45 20 10 Comparison of HTS vs. Cu Devices For an HTS device to compete its Cu counterpart operating at room temperature (RT), its dissipation at Top, PHTS[W/m], multiplied by the refrigerator’s compressor-to-cooling power ratio, QRT/Qop, < Cu’s Joule dissipation, PCu[W/m] PHTS (QRT/Qop) <PCu PCu/PHTS>QRT/Qop Challenge:Cryogenics • QRT /Qop, i.e., refrigerator • efficiency Challenge:AC Losses • PHTSto satisfy PCu/PHTS>QRT/Qop DAPNIA Day  HTS Saclay (03/07/2006)

  26. Dimensions & Characteristics of “Basic (Ic=100 A) HTS tape HTS Cu w= 4x103m (4 mm) s = 1x106m (1 µm) YBCO w = 100 Cu Substrate; stabilizer, etc. w s = 1x104m (100 µm) Ic= 100 A (77.3 K, s.f.) Jc= Ic/ (ws)= 2.5x1010A/m2 s s s Comparison of Two Systems: An Illustrative Example • HTS (YBCO) & Cu Transmission “Lines”  Based on HTS • Refrigeration Power Requirement, Qop PHTS vs. PCu= I2R DAPNIA Day  HTS Saclay (03/07/2006)

  27. Pcu PHTS QRT Pcu Figure-Of-Merit (FOM): PHTS Qop Power Density/length, Pcu [W/m], in Cu Tape Cu w s Two-System Comparison (continuation) Self-Field AC Loss Power/length, PHTS [W/m], of HTS Line composed of n 100-A “basic” tapes operated at IT =n  (It /Ic) DAPNIA Day  HTS Saclay (03/07/2006)

  28. 100 W @77 K (QRT/ Qop=22) 10000 FOM=294 33 W/km(PCu/PHTS=6460) 1 kW @77 K (QRT / Qop=15);107 540 W/km(1600) 1000 2.8 kW/km(700) 9.1 kW/km(380) 10 kW @77 K(10);38 10 kW @77 K(10);70 HTSnon-competitive toCu Pcu/ PHTS 100 77-K operation possible, but, at least in this example, a 10-kA HTS line superior to the Cu line only when the HTS line operated at currents below 5 kA 10 1 0 0.6 1 0.2 0.4 0.8 i Pcu/PHTS & FOM vs. ifor 10-kA (nominal) Lines @77 K DAPNIA Day  HTS Saclay (03/07/2006)

  29. = QRT Pcu PHTS Qop Challenges:YBCO Two-System Comparison (continuation) Ways to improve FOM: • ImprovedYBCO (Jc@77 K ) • Thinner substrate ( ) • Improved refrigerator (QRT/ Qop) Challenge:Cryogenics LTS’s Failure in Power Applications: • QRT /Qop @ 4.2 K too large to satisfy PCu /PLTS> [QRT/Qop]4.2 K DAPNIA Day  HTS Saclay (03/07/2006)

  30. Quench Initiation Zone (“Hot spot”) NZP for HTS Ccd (T)very largeUHTS<<ULTS Protection “Expensive” magnets must be protected from permanent damages • LTS magnets generally rely on NZP • (normal zone propagation) to spread out • the resistive zone to keep the “hot spot” • temperature well below 300 K • In HTS magnets, NZP velocities (longitudinal • & transverse), compared with those in LTS • magnets, very slow, leading to a dangerously • high “hot spot” temperature DAPNIA Day  HTS Saclay (03/07/2006)

  31. Challenges (continuation) Protection • Develop fail-safe protection techniques • Develop normal-zone detection techniques DAPNIA Day  HTS Saclay (03/07/2006)

  32. Enhance test facilities for evaluation of HTS • Ic measurement (up to: 500 A; 30 T; 100 K; 0.5%) • Protection • Cryogenics • QRT/Qoporefficiency even at 77 K • Make cryogenics LESS visible to the user  Important Activities for HTS • BUILD and operate MAGNETS: LTS, LTS/HTS, HTS • R&D Areas, besides conductor • solid-cryogen may help achieve this goal • Superconducting joints (for NMR/MRI) DAPNIA Day  HTS Saclay (03/07/2006)

  33. Market Penetrationfor HTS • HTS applications most likely to succeed and benefit • society, i.e., market penetration, include: DC or nearly DC devices: those already conquered by LTS, e.g., NMR/MRI; HEP; even fusion • If HTSreplacing technology to LTS its marketplace penetration to be decided by ECONOMICS • Conductor cost/performance ($/ka m); AC losses; Cryogenic efficiency • If HTSenabling technology, e.g., high-field NMR and MRI, its success dictated by HTS PERFORMANCE DAPNIA Day  HTS Saclay (03/07/2006)

  34. Conclusions • HTS for NMR/MRI: work already started • HTS for HEP & fusion: NOT TOO EARLY to begin planning • For the most prized application  in terms of sheer volume  • electric power, LTS NOT ENABLING: hope hinges on HTS • HTS opportunities & challenges will keep ALL of us • innovative, relevant, and productive for a long time! Merci beaucoup DAPNIA Day  HTS Saclay (03/07/2006)

More Related