1 / 43

MAP – Where do we stand?

MAP – Where do we stand?. Philippe Bougeault Chairman of the MAP Steering Committee Météo-France, CNRM, Toulouse ICAM/MAP, Brig, May 2003. Mesoscale Alpine Programme: Objectives. Improve the understanding and numerical prediction of:

Download Presentation

MAP – Where do we stand?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MAP – Where do we stand? Philippe Bougeault Chairman of the MAP Steering Committee Météo-France, CNRM, Toulouse ICAM/MAP, Brig, May 2003

  2. Mesoscale Alpine Programme:Objectives Improve the understanding and numerical prediction of: • 1. Orographically influenced precipitation and related floods (Wet-MAP) • 2. Foehn, Gap Flows, Breaking Gravity waves, PV Banners (Dry-MAP) • 3. PBL structure in deep valleys

  3. MAP essentials • 14 countries have joined an initial proposal of Switzerland • MAP is the first Research and Development Program of WMO/WWRP • MAP main infrastructure is supported by MAP-NWS, a EUMETNET program • MAP-SOP took place for 10 weeks in September-November 1999

  4. A meteorological and instrumental success • All events more frequent than average, 1999 was the best ‘MAP year’ of the decade • 17 IOPs totalling 35 days of observations • 110 research aircraft missions • 6800 radios-sondes launched, 84 constant level balloons • 864 hours of research radars, 187 hours of lidars • This extraordinary dataset must be promoted • All data are freely accessible on the Internet from the MDC http://www.map.ethz.ch

  5. P1: Orographic precipitation mechanisms • Basic mechanisms of production or enhancement of precipitation by orography • Small scale dynamics of precipitating systems interacting with orography • Growth mechanisms for precipitating particles

  6. dry snow U/Nh < 1 (IOP8) wet snow rain graupel riming U/Nh > 1 (IOP2b) coalescence large drops Medina and Houze, 2003: Paradigmatic models of rain production

  7. 1D Water Continuity Model Ac Fr Rain Kc Cc Water Vapor Cloud Water Gl Fi Kci Ice Cc – condensation of cloud water Ac – autoconversion of cloud water Kc – collection of cloud water by rain Kci – collection of cloud water by ice Fr – fallout of rain Fi – fall out of ice Gl – glaciation Assumes saturated parcel (no evaporation or entrainment) Yuter and Houze, 2003: Microphysical modes of precipitation growth

  8. Hagen and Yuter, 2003 Best Z-R relation for 10 min data: Z=216 R1.5 Slight overestimation of rain by French, Austrian and Italian radars, slight underestimation of rain by Swiss radars

  9. Steiner et al., 2003: Evidence of systematic drainage flows during rainy events

  10. Chong and Pradier: The mesoNH model is able to reproduce these drainage flows

  11. NO EVAPORATION REFERENCE NO MELTING Chong and Pradier: the model indicates that downslope flow is strongly influenced by dry dynamics (classical blocking)

  12. Asencio and Stein, 2003

  13. MODEL INTERCOMPARISON ON IOP2B

  14. 1H PRECIP 27H PRECIP

  15. P2: Incident upper-tropospheric PV anomalies • Dynamics of large PV anomalies approaching the Alps (PV-streamers) • Role as precursor of severe precipitation • Modification by diabatic effects generated by orography • Significance of small-scale structures seen on water-vapor satellite images

  16. Liniger and Davies (2003) : Comparison of upper atmosphere water vapor from Meteosat WV channel (Contours) and reconstructed from ECMWF analysis via Lagrangian Forward Projection technique (gray shades). This is 12UTC 6 November 1999 (IOP15)

  17. Hoinka et al (2003) Cross section of WV mixing ratio (ppmv) on 6/11/99: Comparison between ECMWF, MesoNH, and observations from the DIAL Lidar

  18. P3: Hydrological measurements and flood forecasting • Near-real time trial to forecast floods with coupled systems • Testing soil moisture monitoring techniques • Evaluate the significance of soil moisture initial value and water storage in dams for flood forecasting

  19. Ranzi et al 2003: Inverse modelling method allows to reconstruct rainfall on 17 small sub-basins of the Toce-Ticino 24-hr rainfall of IOP2b event

  20. Jasper and Kaufmann, 2003: Poor performance of MC2-3km to force the fydrological model, due to a strong negative rainfall bias. If MC2 rainfall are rescaled by a factor 1.77, better results.

  21. Kouwen and Benoit, 2003: MC2 better than radars to force the hydrological model on IOP2b case.

  22. P4: Dynamics of gap flows • Explore the 4D velocity distribution at the Brenner pass and within the Wipp valley • Ascertain the existence and consequences of hydraulic jumps

  23. Durran et al, 2003 Ground Lidar and P-3 in situ wind measurements agree to within 2m/s This allows a very detailed study of the gap flow in the Wipp valley

  24. Flamant et al (2003): Summary on Gap Flow event on 30 October • The upstream flow had an inversion between the gap and crests altitudes • Part of the jet in the Wipp valley originates from a mountain wave • The jet (18m/s) was deviated to the eastern side of the valley because of the southwesterly synoptic wind • Two hydraulic jumps existed along the valley, consistent with reduced-gravity hydraulic theory • Most features were well captured by a meso-scale model

  25. P5: Foehn in the Rhine valley • Explore the 4D variability of Foehn in the Rhine valley • Mechanisms for Foehn penetration to the ground • Air quality related aspects • Interaction of Foehn with the upper-level flow

  26. Beffrey et al, 2003: A conceptual model of the Foehn in the Rhine valley

  27. Turbulent wake in the Foehn region (statistics on 5 flights) (A. Druilhet) Dominant terms: Shear production, advection

  28. Lothon et al, 2003: The dissipative length appears surprisingly constant throughout the IOPs and across the range. This will have implications for turbulence parametrization

  29. Potential temperature Jaubert et al. 2003: Predictability of fine scale details of the Foehn intensity at ground level: comparison between the RASS at Rankweill and simulations by MesoNH

  30. Southerly wind component

  31. P6: 3D Gravity wave breaking • Explore the space and time variability of gravity wave breaking in the Alps • Determine their predictability by meso-scale models • Validate new observational strategies

  32. Satellite Model Volkert et al (2003): Mesoscale model captures the full organization of a complex field of lee waves

  33. Doyle and Smith, 2003: Upstream diabatic heating due to rain enhances dramatically the lee waves during IOP2b

  34. P7: Potential vorticity banners • Investigate the high resolution structure of the Alpine wake at or below mountain-top level • Validate the structure of PV-banners predicted by meso-scale models and their generation mechanisms • Investigate the dynamic stability of these structures

  35. Schär et al, 2003: Detailed aircraft observations of the primary PV banner generated by the western tip of the Alps allow to distinguish several PV filaments. Some of them could be traced specifically to the Pelvoux and Viso peaks. Similarly, Jiang et al. (2003) could attribute a PV filament (separating Mistral from Tramontane) specifically to Mont-Lozère.

  36. What MAP still has to do • Translate progress in understanding in progress in real-time NWP • Organize a demonstration of this progress • Issue definite recommendations regarding the evolution of the operational observing system for the prediction of intense weather in the Alps • Set-up a program on societal and economic impacts

  37. On-going work • Special Issue of QJRMS January 2003 Part B • Special Issue of HESS in preparation • Special event on FORM results in preparation • Those issues represent only a small part of all MAP publications: see the MDC list for a complete record • MAP annual science meetings: with the ICAM, Brig, 19-23 May 2003, with the AMS/MMC in June 2004 • Intercomparison of numerical models on the case of IOP2

  38. A final report on the DAQUAMAP project will soon be released • A re-analysis of the SOP period with an updated assimilation system and all special observations has been performed at ECMWF. The reanalysis files are available from MDC every 3hours, for the whole SOP. The observations files are also available in BUFR format from the MDC. Use of both of these products is strongly encouraged! • Correction of the RS moisture bias is in progress • Production of reference rainfall analyses for the SOP (using both radars and gages) is planned

  39. Towards a possible Forecast Demonstration Project? • The WWRP concept of a FDP: to demonstrate progress in forecasting techniques, in a real-time operational context, with involvement of end-users and objective assessment of success • Based on MAP history, the high-resolution NWP of rainfall and flooding risk in the area of Lago Maggiore appears as the most logical way to measure the progress achieved by MAP

  40. Conditions of a succesful FDP • Explore the most useful lead times and resolution for intense rain prediction: this requires to develop a deep understanding of how a variety of users are using the forecasts • Include a probabilistic component, e.g. force MAP-proven mesoscale models by EPS products • Investigate operating characteristics of the systems (false alarms ratio, hit rates, ROC curves, etc…)

  41. Develop a good working relationship with some key end-users, e.g. local water authorities, local civil protection authorities, medias, etc… • This will need an investment of our community in societal and economic studies: a good knowledge of the various costs induced by a flood may in the end prove necessary to develop an effective forecasting system

More Related