1 / 19

# Logic Values - PowerPoint PPT Presentation

Logic Values. 0:logic 0 / false 1:logic 1 / true X:unknown logic value Z:high-impedance. Strength levels. Data Types. Nets Connects between hardware elements Must be continuously driven by Continuous assignment (assign) Module or gate instantiation (output ports)

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Logic Values' - ernst

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

• 0:logic 0 / false

• 1:logic 1 / true

• X:unknown logic value

• Z:high-impedance

• Nets

• Connects between hardware elements

• Must be continuously driven by

• Continuous assignment (assign)

• Module or gate instantiation (output ports)

• Default initial value for a wire is “Z” (and for a trireg is “x”)

• Registers

• Represent data storage elements

• Retain value until another value is placed on to them

• Similar to “variables” in other high level language

• Different to edge-triggered flip-flop in real ciucuits

• Do not need clock

• Default initial value for a reg is “X”

• Examples

reg a; // a scalar register

wand w; // a scalar net of type “wire and”

reg [3:0] v; // a 4-bit vector register from msb to lsb

reg [7:0] m, n; // two 8-bit registers

tri [15:0] busa; // a 16-bit tri-state bus

wire [0:31] w1, w2;

// Two 32-bit wires with msb being the 0 bit, not recommended

• The most common and important net types

• wire and tri

• for standard interconnection wires

• wire: single driver e.g. output of “and” gate

• tri: multiple driver e.g. multiplexer

• supply1 and supply0  “x”

• strong1 and supply1  “supply1”

• Other wire types

• wand, wor, triand, and trior

• for multiple drivers that are wired-anded and wired-ored

• tri0 and tri1

• pull down and pull up

• trireg

• for net with capacitive storage

• If all drivers at z, previous value is retained

• Two states:

• Driven state: at least one driver drives 0, 1, x

• Capacitive state:

• all driver have high impedance “z”

• Strength: small, medium, large; default is medium

• module tritest();

• wire w1, w2, w3, w4;

• tri0 t01, t02, t03, t04;

• tri1 t11, t12, t13, t14;

• assign w1 = 0;

• assign t01 = 0;

• assign t11 = 0;

• assign w2 = 1'bz;

• assign t02 = 1'bz;

• assign t12 = 1'bz;

• assign w3 = 1;

• assign t03 = 1;

• assign t13 = 1;

• Initial

• begin

• #1;\$display(w1, w2, w3, w4);

• \$display(t01, t02, t03, t04);

• \$display(t11, t12, t13, t14);

• end

• endmodule

Results:

0 z 1 z 0 0 1 0 0 1 1 1

• reg

• any size, unsigned

• Integer

• integet a,b; // declaration

• 32-bit signed (2’s complement)

• Time

• 64-bit unsigned, behaves like a 64-bit reg

• \$display(“At %t, value=%d”,\$time,val_now)

• real

• real c,d; //declaration

• 64-bit real number

• Defaults to an initial value of 0

• Constant numbers are integer or real constants. Integer constants are written as “width ‘radix value”

• The radix indicates the type of number

• Decimal(d or D)

• Hex (h or H)

• Octal (o or O)

• Binary (b or B)

• A number may be sized or unsized

Number Specification (continue)

• Sized numbers

• <size>’<base_format><number>

• <size> is in decimal and specifies the number of bits

• ‘<base_format> is: ‘d ‘D ‘h ‘H ‘b ‘B ‘o ‘O

• The <number> digits are 0-f, uppercase may be used

• Examples:

• 4’b1111

• 12’habc

• 16’d255

• 6’h3a // Binary 111010

• 1’bx // One-bit X

• 32’bz // 32 bits of High-Z (impedance)

• Unsized numbers – The <size> is not specified (default is simulator/compiler specific, >= 32 bits)

• Numbers without a base are decimal by default

• Examples

• 100 // Decimal 100, 32 bits by default

assign A1 = (3+2) %2; // A1 = 1

assign A2 = 4 >> 1; assign A4 = 1 << 2; // A2 = 2 A4 = 4

assign Ax = (1= =1'bx); //Ax=x

assign Bx = (1'bx!=1'bz); //Bx=x

assign D0 = (1= =0); //D0=False

assign D1 = (1= =1); //D1=True

assign E0 = (1= = =1'bx); //E0=False

assign E1 = (4'b01xz = = = 4'b01xz);; //E1=True

assign F1 = (4'bxxxx = = = 4'bxxxx); //F1= True

assign x = a ? b : c //if (a) then x = b else x = c

// A=1’b1; B=2’b00, C=2’b10; D=3’b110;

Y={B, C} //Result Y is 4’b0010

Y={A, B, C, D, 3’b001} //Result Y is 11’b10010110001

Y={A, B[0], C[1]} // Result Y is 3’b101

• Reg A;

• Reg [1:0] B, C;

• Reg [2:0] D;

• A=1’b1; B=2’b00, C=2’b10; D=3’b110;

• Y={4{A}} // Result Y is 4’b1111

• Y={4{A}, 2{B}} // Result Y is 8’b11110000

• Y ={4{A}, 2{B}, C} //Result Y is 8’b1111000010

Example – Multiplexer_1

• // Verilog code for Multiplexer implementation using assign// File name: mux1.v // by Harsha Perla for http://electrosofts.com// harsha@electrosofts.com// Available at http://electrosofts.com/verilogmodule mux1( select, d, q );input [1:0] select;input [3:0] d;output q;wire q;wire[1:0] select;wire[3:0] d;assign q = d[select];endmodule

Example – Multiplexer_2

// Verilog code for Multiplexer implementation using always block.

// by Harsha Perla for http://electrosofts.com

// harsha@electrosofts.com

// Available at http://electrosofts.com/verilog

module mux2( select, d, q );

input[1:0] select;

input[3:0] d;

output q;

regq;

wire[1:0] select;

wire[3:0] d;

always @(d or select)

q = d[select];

endmodule

Example – Multiplexer_3

module mux4_1 (out, in0, in1, in2, in3, sel) ;

output out ;

input in0,in1,in2,in3 ;

input [1:0] sel ;

assign out = (sel == 2'b00) ? in0 :

(sel == 2'b01) ? in1 :

(sel == 2'b10) ? in2 :

(sel == 2'b11) ? in3 :

1'bx ;

endmodule

• Design an 1-to-8 Demultiplexer