Lecture 4 Non-Linear and Generalized Mixed Effects Models

1 / 43

# Lecture 4 Non-Linear and Generalized Mixed Effects Models - PowerPoint PPT Presentation

Ziad Taib Biostatistics, AZ MV, CTH Mars 2009. Lecture 4 Non-Linear and Generalized Mixed Effects Models. 1. Date. Part I Generalized Mixed Effects Models. 2. Date. Outline of part I: Generalized Mixed Effects Models. Name, department. 3. Formulation Estimation Inference Software.

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.

## PowerPoint Slideshow about 'Lecture 4 Non-Linear and Generalized Mixed Effects Models' - emily

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

Biostatistics, AZ

MV, CTH

Mars 2009

1

Date

### Part IGeneralized Mixed Effects Models

2

Date

Outline of part I:Generalized Mixed Effects Models

Name, department

3

• Formulation
• Estimation
• Inference
• Software

Date

Various forms of models and relation between them

Classical statistics (Observations are random, parameters are unknown constants)

• LM: Assumptions:
• independence,
• normality,
• constant parameters

Repeated measures: Assumptions 1) and 3) are modified

LMM: Assumptions 1) and 3) are modified

GLMM: Assumption 2) Exponential family and assumptions 1) and 3) are modified

GLM: assumption 2) Exponential family

Longitudinal data

Maximum likelihood

Non-linear models

LM - Linear model

GLM - Generalised linear model

LMM - Linear mixed model

GLMM - Generalised linear mixed model

Bayesian statistics

Name, department

4

Date

Example 1ToenailDermatophyteOnychomycosis

5

Common toenail infection, difficult to treat, affecting more than 2% of population. Classical treatments with antifungal compounds need to be administered until the whole nail has grown out healthy.

New compounds have been developed which reduce treatment to 3 months.

Date

Example 1 :

Name, department

6

• Randomized, double-blind, parallel group, multicenter study for the comparison of two such new compounds (A and B) for oral treatment.

Research question:

Severity relative to treatment?

• 2 × 189 patients randomized, 36 centers

• 48 weeks of total follow up (12 months)

• 12 weeks of treatment (3 months)

measurements at months 0, 1, 2, 3, 6, 9, 12.

Date

Example 2 The Analgesic Trial

Name, department

7

Single-arm trial with 530 patients recruited (491 selected for analysis).

Analgesic treatment for pain caused by chronic non- malignant disease.

Treatment was to be administered for 12 months.

We will focus on Global Satisfaction Assessment (GSA).

GSA scale goes from 1=very good to 5=very bad.

GSA was rated by each subject 4 times during the trial, at months 3, 6, 9, and 12.

Date

Questions

Observed

frequencies

Name, department

8

Evolution over time.

Relation with baseline covariates: age, sex, duration of the pain, type of pain, disease progression, . . .

Date

Generalized linear Models:

Name, department

9

Date

The Bernoulli case

Name, department

10

Date

Generalized Linear Models

Name, department

13

Date

Generalised Linear Mixed Models

Name, department

15

Date

EmpiricalBayesestimates

Name, department

18

Date

Example 1 (cont’d)

Name, department

19

Date

21

Date

Syntax for NLMIXED

http://www.tau.ac.il/cc/pages/docs/sas8/stat/chap46/index.htm

22

PROC NLMIXED options ;

BY variables ;

CONTRAST 'label' expression <,expression> ;

ESTIMATE 'label' expression ;

ID expressions ;

MODEL model specification ;

PARMS parameters and starting values ;

PREDICT expression ;

RANDOM random effects specification ;

REPLICATE variable ;

Program statements; The following sections provide a detailed description of each of these statements.

Date

23

PROC NLMIXED Statement

BY Statement

CONTRAST Statement

ESTIMATE Statement

ID Statement

MODEL Statement

PARMS Statement

PREDICT Statement

RANDOM Statement

REPLICATE Statement

Programming Statements

Example

24

This example analyzes the data from Beitler and Landis (1985), which represent results from a multi-center clinical trial investigating the effectiveness of two topical cream treatments (active drug, control) in curing an infection. For each of eight clinics, the number of trials and favorable cures are recorded for each treatment. The SAS data set is as follows.

data infection;

input clinic t x n;

datalines;

1 1 11 36

1 0 10 37

2 1 16 20

2 0 22 32

3 1 14 19

3 0 7 19

4 1 2 16

4 0 1 17

5 1 6 17

5 0 0 12

6 1 1 11

6 0 0 10

7 1 1 5

7 0 1 9

8 1 4 6

8 0 6 7

run;

Date

25

Date

Suppose nij denotes the number of trials for the ith clinic and the jth treatment (i = 1, ... ,8 j = 0,1), and xij denotes the corresponding number of favorable cures. Then a reasonable model for the preceding data is the following logistic model with random effects:

The notation tj indicates the jth treatment, and the ui are assumed to be iid .

Name, department

26

• The PROC NLMIXED statements to fit this model are as follows:

proc nlmixed data=infection;

parms beta0=-1 beta1=1 s2u=2;

eta = beta0 + beta1*t + u;

expeta = exp(eta);

p = expeta/(1+expeta);

model x ~ binomial(n,p);

random u ~ normal(0,s2u) subject=clinic;

predict eta out=eta; estimate '1/beta1' 1/beta1; run;

Date

27

Date

The PROC NLMIXED statement invokes the procedure, and the PARMS statement defines the parameters and their starting values. The next three statements define pij, and the MODEL statement defines the conditional distribution of xij to be binomial. The RANDOM statement defines U to be the random effect with subjects defined by the CLINIC variable.

The PREDICT statement constructs predictions for each observation in the input data set. For this example, predictions of and approximate standard errors of prediction are output to a SAS data set named ETA. These predictions include empirical Bayes estimates of the random effects ui.

The ESTIMATE statement requests estimates .

Parameter Estimates

Name, department

28

Date

Conclusions

Date

29

The "Parameter Estimates" table indicates marginal significance of the two fixed-effects parameters. The positive value of the estimate of indicates that the treatment significantly increases the chance of a favorable cure.

The "Additional Estimates" table displays results from the ESTIMATE statement. The estimate of equals 1/0.7385 = 1.3541 and its standard error equals 0.3004/0.73852 = 0.5509 by the delta method (Billingsley 1986). Note this particular approximation produces a t-statistic identical to that for the estimate of .

PROC NLMIXED

Name, department

30

Date

PROC NLMIXED

Name, department

31

Date

Example 2 (cont’d)

Results

Name, department

36

• We analyze the data using a GLMM, but with different approximations:
• Integrand approximation: GLIMMIX and MLWIN(PQL1 or PQL2)

Date

PROC MIXED vs PROC NLMIXED

38

The models fit by PROC NLMIXED can be viewed as generalizations of the random coefficient models fit by the MIXED procedure. This generalization allows the random coefficients to enter the model nonlinearly, whereas in PROC MIXED they enter linearly.

With PROC MIXED you can perform both maximum likelihood and restricted maximum likelihood (REML) estimation, whereas PROC NLMIXED only implements maximum likelihood.

Finally, PROC MIXED assumes the data to be normally distributed, whereas PROCNLMIXED enables you to analyze data that are normal, binomial, or Poisson or that have any likelihood programmable with SAS statements.

PROC NLMIXED does not implement the same estimation techniques available with the NLINMIX and GLIMMIX macros. (generalized estimating equations). In contrast, PROC NLMIXED directly maximizes an approximate integrated likelihood.

References

39

Beal, S.L. and Sheiner, L.B. (1982), "Estimating Population Kinetics," CRC Crit. Rev. Biomed. Eng., 8, 195 -222.

Beal, S.L. and Sheiner, L.B., eds. (1992), NONMEM User's Guide, University of California, San Francisco, NONMEM Project Group.

Beitler, P.J. and Landis, J.R. (1985), "A Mixed-effects Model for Categorical Data," Biometrics, 41, 991 -1000.

Breslow, N.E. and Clayton, D.G. (1993), "Approximate Inference in Generalized Linear Mixed Models," Journal of the American Statistical Association, 88, 9 -25.

Davidian, M. and Giltinan, D.M. (1995), Nonlinear Models for Repeated Measurement Data, New York: Chapman & Hall.

Diggle, P.J., Liang, K.Y., and Zeger, S.L. (1994), Analysis of Longitudinal Data, Oxford: Clarendon Press.

Engel, B. and Keen, A. (1992), "A Simple Approach for the Analysis of Generalized Linear Mixed Models," LWA-92-6, Agricultural Mathematics Group (GLW-DLO). Wageningen, The Netherlands.

Date

Name, department

40

Fahrmeir, L. and Tutz, G. (2002). Multivariate Statistical Modelling Based on Generalized Linear Models, (2nd edition). Springer Series in Statistics. New-York: Springer-Verlag.

Ezzet, F. and Whitehead, J. (1991), "A Random Effects Model for Ordinal Responses from a Crossover Trial," Statistics in Medicine, 10, 901 -907.

Galecki, A.T. (1998), "NLMEM: New SAS/IML Macro for Hierarchical Nonlinear Models," Computer Methods and Programs in Biomedicine, 55, 107 -216.

Gallant, A.R. (1987), Nonlinear Statistical Models, New York: John Wiley & Sons, Inc.

Gilmour, A.R., Anderson, R.D., and Rae, A.L. (1985), "The Analysis of Binomial Data by Generalized Linear Mixed Model," Biometrika, 72, 593 -599.

Harville, D.A. and Mee, R.W. (1984), "A Mixed-model Procedure for Analyzing Ordered Categorical Data," Biometrics, 40, 393 -408.

Lindstrom, M.J. and Bates, D.M. (1990), "Nonlinear Mixed Effects Models for Repeated Measures Data," Biometrics, 46, 673 -687.

Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996), SAS System for Mixed Models, Cary, NC: SAS Institute Inc.

Date

41

Date

Longford, N.T. (1994), "Logistic Regression with Random Coefficients," Computational Statistics and Data Analysis, 17, 1 -15.

McCulloch, C.E. (1994), "Maximum Likelihood Variance Components Estimation for Binary Data," Journal of the American Statistical Association, 89, 330 -335.

McGilchrist, C.E. (1994), "Estimation in Generalized Mixed Models," Journal of the Royal Statistical Society B, 56, 61 -69.

Pinheiro, J.C. and Bates, D.M. (1995), "Approximations to the Log-likelihood Function in the Nonlinear Mixed-effects Model," Journal of Computational and Graphical Statistics, 4, 12 -35.

Roe, D.J. (1997) "Comparison of Population Pharmacokinetic Modeling Methods Using Simulated Data: Results from the Population Modeling Workgroup," Statistics in Medicine, 16, 1241 - 1262.

Schall, R. (1991). "Estimation in Generalized Linear Models with Random Effects," Biometrika, 78, 719 -727.

Sheiner L. B. and Beal S. L., "Evaluation of Methods for Estimating Population Pharmacokinetic Parameters. I. Michaelis-Menten Model: Routine Clinical Pharmacokinetic Data," Journal of Pharmacokinetics and Biopharmaceutics, 8, (1980) 553 -571.

42

Date

Sheiner, L.B. and Beal, S.L. (1985), "Pharmacokinetic Parameter Estimates from Several Least Squares Procedures: Superiority of Extended Least Squares," Journal of Pharmacokinetics and Biopharmaceutics, 13, 185 -201.

Stiratelli, R., Laird, N.M., and Ware, J.H. (1984), "Random Effects Models for Serial Observations with Binary Response," Biometrics, 40, 961-971.

Vonesh, E.F., (1992), "Nonlinear Models for the Analysis of Longitudinal Data," Statistics in Medicine, 11, 1929 - 1954.

Vonesh, E.F. and Chinchilli, V.M. (1997), Linear and Nonlinear Models for the Analysis of Repeated Measurements, New York: Marcel Dekker.

Wolfinger R.D. (1993), "Laplace's Approximation for Nonlinear Mixed Models," Biometrika, 80, 791 -795.

Wolfinger, R.D. (1997), "Comment: Experiences with the SAS Macro NLINMIX," Statistics in Medicine, 16, 1258 -1259.

Wolfinger, R.D. and O'Connell, M. (1993), "Generalized Linear Mixed Models: a Pseudo-likelihood Approach," Journal of Statistical Computation and Simulation, 48, 233 -243.

Yuh, L., Beal, S., Davidian, M., Harrison, F., Hester, A., Kowalski, K., Vonesh, E., Wolfinger, R. (1994), "Population Pharmacokinetic/Pharmacodynamic Methodology and Applications: a Bibliography," Biometrics, 50, 566 -575

End of Part I

Any Questions?

Name, department

43

Date