1 / 21

A Purine-Pyrimidine Classification Scheme of the Genetic Code

Institute of Molecular Biotechnology. Jena. A Purine-Pyrimidine Classification Scheme of the Genetic Code. Swetlana Nikolajewa, Thomas Wilhelm Theoretical Systems Biology. Overview. The genetic code - introduction The new classification scheme of the genetic code shows:

elysia
Download Presentation

A Purine-Pyrimidine Classification Scheme of the Genetic Code

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Institute of Molecular Biotechnology Jena A Purine-Pyrimidine Classification Scheme of the Genetic Code Swetlana Nikolajewa, Thomas Wilhelm Theoretical Systems Biology

  2. Overview • The genetic code - introduction • The new classification scheme of the genetic code shows: • symmetry characteristics • explanation for the number (22) of tRNA genes in mammalian mitochondrial genome • amino-acids patterns and regularities of codons (strong, mixed and weak codons) • possible predecessors of our contemporary quaternary triplet code

  3. The Genetic Code • 3 nucleotidesbases (triplets) of A, G, C, U are used to code for 20 amino acids • two purines (A,G) • two pyrimidines (C,U) • 64 possible codons (4x4x4=43) • 3 termination codons: UGA, UA(G/A) • 61 codons for amino acid coding • Met (AUG) codon is also the start codon

  4. The Common Genetic Code Table

  5. The new classification scheme of the genetic code • binary representation of • purines(A,G) → 1 • pyrimidines(C,U) → 0 • 23 = 8 different binary triplets 000 , 001, … ,111each of these has again 8 possibilities, for instance: • 000 stands for three pyrimidines: CCC, CCU, UUC, …, UUU • 111 stands for three purines: GGG, GGA, GAA, …,AAA • CG binds via 3hydrogen bonds in the complementary base-paring • AUbinds via 2 hydrogen bonds in the complementary base-paring

  6. The Common Genetic Code Table The Common Genetic Code Table contains 64 fields…

  7. The new classification scheme (standard genetic code) Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine Ala GC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111 the new scheme contains the same information in only 32 fields.

  8. Deviations from the Standard Code Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) 1/1 PheUU(C/U) ProCC(A/G) SerUC(A/G) 1/0 001 LeuUU(A/G) 1/0 LeuCU(A/G) 1/2 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) 5/0 AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) 2/4 GlnCA (A/G) ArgCG(A/G) 011 Stop /TrpUG(A/G) 9/0 AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) LysAA(A/G) 3/0 GlyGG(A/G) ArgAG(A/G) 6/6 GluGA(A/G) 111 http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  9. Mitochondrial Genomes Have Several Surprising Features • genetic code of mitochondria • only22 tRNAs are required for mammalian mitochondrial protein synthesis

  10. The Mammalian Mitochondrial Genetic Code Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Met/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Trp /TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) LysAA(A/G) GlyGG(A/G) STOPAG(A/G) GluGA(A/G) 111 http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  11. The Mammalian Mitochondrial Code:8 tRNAs for family codons + 14 tRNAs for non-family codons Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 tRNAPheUU(C/U) tRNALeu1CU tRNASer1UC tRNAProCC tRNALeu2UU(A/G) 001 tRNAValGU tRNAThrAC tRNAIleAU(C/U) tRNAAlaGC 100 101 tRNAMetAU(A/G) tRNAArgCG tRNACysUG (C/U) 010 tRNAHisCA (C/U) tRNATyrUA(C/U) STOPUA(A/G) tRNAGlnCA (A/G) 011 tRNATrpUG (A/G) tRNAAsnAA(C/U) tRNAGlyGG 110 tRNASer2AG (C/U) tRNAAspGA(C/U) tRNALysAA(A/G) STOPAG(A/G) tRNAGluGA(A/G) 111 http://mamit-trna.u-strasbg.fr/2DStructures.html

  12. Amino acids patterns: Polar requirement of NCN and NUN codons Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) Asparagine GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) Asparaticacid GlyGG(A/G) ArgAG(A/G) LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111 C. R. Woese, G. J. Olsen, M. Ibba, D. Söll Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process. MMBR 2000(64) 202-236

  13. Amino acids patterns: Hydrophobicity. Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) GlyGG(A/G) ArgAG(A/G) LysAA(A/G) GluGA(A/G) 111 Kyte&Doolittle, 1982, http://biology-pages.info

  14. Codon-Anticodon symmetry Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) LysAA(A/G) GlyGG(A/G) ArgAG(A/G) GluGA(A/G) 111

  15. Point symmetry Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) SerUC (C/U) LeuCU(C/U) PheUU(C/U) ProCC(A/G) SerUC(A/G) 001 LeuUU(A/G) LeuCU(A/G) 100 ThrAC(C/U) AlaGC(C/U) IleAU(C/U) ValGU(C/U) 101 Ile/MetAU(A/G) AlaGC(A/G) ThrAC(A/G) ValGU(A/G) ArgCG(C/U) CysUG(C/U) 010 HisCA (C/U) TyrUA(C/U) StopUA(A/G) GlnCA (A/G) ArgCG(A/G) 011 Stop/TrpUG(A/G) AsnAA(C/U) GlyGG(C/U) 110 SerAG(C/U) AspGA(C/U) GlyGG(A/G) ArgAG(A/G) LysAA(A/G) GluGA(A/G) 111 D. HalitskyExtending the (Hexa-)Rhombic Dodecahedral Model of the Genetic Code: the Code's Four 6-fold Degeneracies and the Ten Orthogonal Projections of the 5-cube as 3-cube. Computer Systems Technology 2004

  16. Correlation of codon strength and amino acid properties

  17. CGU, UAC,… Evolution of the genetic code • our contemporary code is the quaternary triplet code: 43=64 fields • binary doublet: 41=4 fields CGU, UAC,… • quaternary doublet code:42=16 fields

  18. Evidence: Evolution of the Genetic Code Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine AlaGC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111

  19. Evidence: Evolution of the Genetic Code Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine AlaGC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111

  20. Outlook • Looking for binary patterns in the genomes • Additional information http://www.imb-jena.de/~sweta/genetic_code/ • Acknowledgment Maik Friedel Andreas Beyer Frank Grosse Thankyouforyourattention!

  21. The new classification scheme of the standard genetic code Mixedcodons 5 hydrogen bonds Code Strongcodons 6 hydrogen bonds Mixedcodons 5 hydrogen bonds Weakcodons 4 hydrogen bonds 000 ProCC (C/U) Proline SerUC (C/U) Serine LeuCU(C/U) Leucine PheUU(C/U) Phenylalanine SerUC(A/G) Serine LeuUU(A/G) Leucine ProCC(A/G) Proline LeuCU(A/G) Leucine 001 ThrAC(C/U) Threonine AlaGC(C/U) Alanine IleAU(C/U) Isoleucine ValGU(C/U) Valine 100 AlaGC(A/G) Alanine ThrAC(A/G) Threonine ValGU(A/G) Valine 101 Ile/MetAU(A/G) Isoleucine/Methionine ArgCG(C/U) Arginine CysUG(C/U) Cystein 010 HisCA (C/U) Histidine TyrUA(C/U) Tyrosine StopUA(A/G) GlnCA (A/G) Glutamine ArgCG(A/G) Arginine 011 Stop/TrpUG(A/G) Tryptophan AsnAA(C/U) Asparagine GlyGG(C/U) Glycine 110 SerAG(C/U) Serine AspGA(C/U) Asparaticacid GlyGG(A/G) Glycine ArgAG(A/G) Arginine LysAA(A/G) Lysine GluGA(A/G) Glutamaticacid 111 T.Wilhelm, S.Nikolajewa A new classification scheme of the genetic code. J. Mol. Evol. (2004) 59: 598-605

More Related