1 / 14

Advanced Tree Partitioning Shifting Algorithm

Explore the shifting algorithm technique for tree partitioning, including max-min, min-max, and size-constrained solutions. Optimal partitions ensure algorithm termination within a finite number of steps, guaranteeing an optimal result. Lemmas provide insights into down-shifting and component weights. Experience the power of the shifting algorithm in tree partitioning problems.

ctate
Download Presentation

Advanced Tree Partitioning Shifting Algorithm

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The shifting algorithm technique for the partitioning of trees

  2. Tree partition 1 1 6 4 3 1 1 7 6 4 3 7

  3. Problem • Max-min • Min-max • Size constrained min-max • Height-constrained min-max • Most uniform problem

  4. Shifting algorithm

  5. 4-partition 1 1 6 4 3 1 1 7 6 4 3 7

  6. 1 1 6 4 3 1 1 7 6 4 3 7

  7. 1 1 6 4 3 1 1 7 6 4 3 7

  8. 1 1 6 4 3 1 1 7 6 4 3 7

  9. 1 1 6 4 3 1 1 7 6 4 3 7

  10. 1 1 6 4 3 1 1 7 6 4 3 7

  11. Definition • A above Q

  12. Optimality • If A above Q, the algorithm continues. • If A is not optimal, the algorithm does not terminate at A. • Since the algorithm must terminate in a finite number of steps, the result is an optimal partition

  13. Lemma1 Let A > Q. Then the algorithm does not terminate. It makes a down-shift with resulting down-component of weight ≥ Wmin(Q).

  14. Lemma2 • Let A > Q. Let the application of one down-shift of the algorithm change A to A’. Then there exists an optimal partition Q’ such that A’≥ Q’.

More Related