1 / 34

Biomolecules: Structures, Functions, and Relationships |

biomolecules, structures, functions, relationships

colona
Download Presentation

Biomolecules: Structures, Functions, and Relationships |

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statement of Inquiry: AGENDA DO NOW: EPA practice Objective(s): • (Obj 1) Analyzethe structures and function of different types of biomolecules. DATE HERE 10 min {Insert entrance instructions here} For example: Enter the classroom silently and find your seat. Write down homework in your planner. Do Now Wait silently for instructions

  2. Objective of the day • (Obj 1) Compare the structures and function of different types of biomolecules.  

  3. Venus Fly Trap 10 min How can this plant digest a fly?

  4. Venus Fly Trap Like other carnivores, the Venus flytrap eats animals to get nutrients that it needs to make molecules such as proteins and nucleic acids. Other chemical compounds made by the plant’s cells enable the Venus flytrap to digest the animals that it eats. These chemicals are similar to the chemicals that allow you to digest the food that you eat.

  5. Statement of Inquiry/IB Trait STATEMENT OF INQUIRY: The relationship between the structure and function of our parts is one way that we define what it means to be human. IB TRAIT: THINKERS, COMMUNICATORS and INQUIRERS

  6. Americans consume an average of 140 pounds of sugar per person per year Uses of Organic Molecules Cellulose, found in plant cell walls, is the most abundant organic compound on Earth

  7. Uses of Organic Molecules • A typical cell in your body has about 2 meters of DNA A typical cow produces over 200 pounds of methane gas each year HOW??!!

  8. About 60-90 percent of an organism is water Water Water is used in most reactions in the body Water is called the universal solvent

  9. Elements • Pure substances • Have only ONE type of atom • Composed of: • Protons (+) • Electrons (-) • Neutrons (0) • Examples:

  10. What 4 elements are most present in organisms?

  11. Composition of Elements • Protons and neutrons in the nucleus • Electrons in shells outside the nucleus • 1st shell needs 2 electrons to be full • Outer shells need 8 electrons to be full Bohr Model

  12. Atomic Number • Atomic # = # protons • Also = # electrons • Ex. Lithium has 3 protons and 3 electrons

  13. Molecule or Compound? • A molecule is formed when two or more atoms join together chemically. • A compound is a molecule that contains at least two different elements. • All compounds are molecules but not all molecules are compounds. Molecule or Compound?

  14. Pictures of Compounds Glucose C6H12O6 Water H2O

  15. Macromolecules • Macromolecule means LARGE molecule • Carbohydrates – sugars and starches C, H, O • Lipids – fats and oils C, H, O • Proteins – muscle and enzymes C, H, O, N • Nucleic acids – DNA and RNA C, H, O, N, P • Why do you eat food? • For raw materials to build and energy!

  16. Carbohydrates • Made up of C,H,O • Biological Function: source of energy • Examples: sugar, rice, bread, potatoes • Monomer: monosaccharide

  17. Lipids • Made of C,H,O • Biological Function: Store energy • Biological examples: wax, oil, butter. • Monomer: 1 glycerol and 3 fatty acids

  18. Lipids are insoluble in water!Repeat!!! Q1

  19. Lipids & Cell Membranes • Cell membranes are made of lipids called phospholipids • Phospholipids have a head that is polar & attract water (hydrophilic) • Phospholipids also have 2tails that are nonpolar and do not attract water (hydrophobic)

  20. Proteins • Made of C,H,O,N • Biological function: Building and repairing cells, metabolism: speeds up or slows down chemical reactions • Biological example: meat/muscle, hair, nails, enzymes • Monomer: amino acid

  21. Proteins • Proteins are polymers made of monomers called amino acids All proteins are made of 20 different amino acids linked in different orders Proteins are used to build cells, act as hormones & enzymes, and do much of the work in a cell

  22. Enzymes • Proteins that speed up chemical reactions in the cell (catalysts). • Catabolism - breaking molecules • Anabolism – making molecules

  23. Nucleic Acids • Made of C,H,O,N,P • Biological Function: Information called genes, determines physical appearance • Biological Example: DNA, RNA, ATP • Monomer: nucleotides

  24. Nucleic Acids • Store hereditary information Contain information for making all the body’s proteins Two types exist --- DNA & RNA

  25. Nucleic Acids Nitrogenous base (A,G,C, or T) Nucleic acids are polymers of nucleotides Phosphate group Thymine (T) Sugar (deoxyribose) Phosphate Base Sugar Nucleotide

  26. Nucleic Acids

  27. Bases • Each DNA nucleotide has one of the following bases: Thymine (T) Cytosine (C) • Adenine (A) • Guanine (G) • Thymine (T) • Cytosine (C) Adenine (A) Guanine (G)

  28. So how do molecules (chemistry) become life (biology)?

  29. Who can tell me what you’re made of? • Carbohydrates – sugars CHO • Lipids – fats CHO • Proteins – muscle, hair, and enzymes CHON • Nucleic Acids – DNA, RNA, ATP CHONP

  30. ATP – Cellular Energy • ATP is used by cells for energy • Adenosine triphosphate • Made of a nucleotide with 3 phosphate groups

  31. ATP – Cellular Energy • Energy is stored in the chemical bonds of ATP • The last 2 phosphate bonds are HIGH ENERGY • Breaking the last phosphate bond releases energy for cellular work and produces ADP and a free phosphate • ADP (adenosine Diphosphate) can be rejoined to the free phosphate to make more ATP

  32. Guided Practice 15 min Biomolecule Shuffle

  33. More Guided Practice 3 min Glucose, Carbohydrate, cellulose, Plant cell fibers Amino acid, protein, Hemoglobin, Transports oxygen in blood Nucleotide, Nucleic acid, DNA, Codes genetic information.

More Related