300 likes | 481 Views
On. Locally Decodable Codes. Self Correctable Codes. and. t-private PIR. Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel. x ∈ {0,1} n. Private Information Retrieval. On. [CGKS95]. Locally Decodable Codes. Self Correctable Codes. Client. q. Server. and. A(q,x). i ∈[n].
E N D
On Locally Decodable Codes Self Correctable Codes and t-private PIR Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel
x∈{0,1}n Private Information Retrieval On [CGKS95] Locally Decodable Codes Self Correctable Codes Client q Server and A(q,x) i∈[n] t-private PIR P I R i? xi Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel Want: Correctness and privacy for the client Communication: Only the trivial Ω(n) solution
k servers A(q1,x) q1 A(q2,x) q2 x x x∈{0,1}n t-private Private Information Retrieval P I k-server PIR R [CGKS95] Client i t servers xi i?
Best known t-private PIR
C k-query LDC C:{0,1}n→{0,1}m k-server PIR logm query bits 1 bit answer [KT00] On Locally Decodable Codes C:{0,1}n→{0,1}m(n) is a k-LDC Self Correctable Codes encoding C(x) message x and i k t-private PIR Randomized Decoder D xi Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel
C systematic linear k-query SCC C:{0,1}n→{0,1}m linear k-query LDC C:{0,1}n→{0,1}m k-LDC On C:{0,1}n→{0,1}m(n) is a k-SCC Locally Decodable Codes message x encoding C(x) Self Correctable Codes k j and Randomized Corrector M t-private PIR C(x)j Omer Barkol, Yuval Ishai and Enav Weinreb Technion, Israel
Reed-Muller based ? SCC LDC
RM SCC upper bound Yek07 LDC upper bound LDC lower bound Main Problems Closing the gap between: • 1-private and t-private PIR • LDC and SCC
Talk Outline Notions and current state Our contributions: highlights Our contributions: technical details Summary and open issues
1-private k-server PIR 1-private k-server SRPIR t-private kt-server PIR t-private kt-server PIR Our Contributions (1) Communication preserving transformations k-LDC k-SCC
Best known t-private PIR ktservers ?
Closing the gap of LDC vs. SCC Closing the question on t-private PIR RM SCC upper bound Yek07 LDC upper bound LDC lower bound Main Problems Closing the gap between: • 1-private and t-private PIR • LDC and SCC
Our Contributions (2) Linear SCC vs. Combinatorial designs Based on Hamada’sConjecture (1973): Evidence for difficulty of progress on the LDC vs. SCC question
Talk Outline Notions and current state Our contributions: highlights Our contributions: technical details Summary and open issues
1-private k-server PIR t-private kt-server PIR 1-private PIR t-private PIR k-LDC
q1(i1) q2(i1) q3(i1) q1(i2) S1,1 S1,2 S1,3 i1? i? S2,1 S2,2 S2,3 q2(i2) S3,1 S3,2 S3,3 q3(i2) A A1 A1 A2 A2 A A3 A A3 X<<1 X<<2 ⋮ X<<i2 ⋮ ⋮ X<<n-1 1-private 3-server PIR to 2-private 32-server PIR i i ≡ i1 + i2 Xi1+i2=Xi i1 i X=X<<0 X i2? i?
1-private k-server SRPIR t-private kt-server PIR 1-private PIR t-private PIR k-SCC t(k-1)+1
q3 q1 q2 S1 S1 S2 S2 S3 S3 q31 q33 q32 A(q1,x) A(q2,x) A(q3,x) q11 q23 q12 q22 q12 q13 1-private 3-server SRPIR to 2-private 5-server PIR i X xi S? S1 S? S4 S5 S? S? S2 S3 S? S? S5 NO Threshold 3-out-of-5 circuit using only Threshold 2-out-of-3 gates
Threshold 3-out-of-5 1-private 3-server SRPIR to 2-private 2(3-1)+1=5-server PIR i X S1 S2 S3 S4 S5 Threshold 3-out-of-5 circuit using only Threshold 2-out-of-3 gates Threshold (t+1)-out-of-t(k-1)+1 circuit using only Threshold 2-out-of-k gates
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Combinatorial designs 2-(m,k,λ) design m points blocks: sets of k points each 2 points appear together in λblocks 2-(24,4,1) design
Example: lines in F172 design 2-(172,17,1) design Points: GF(17)2 =F172 Blocks: points on a line
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Low rank designs good SCC 2-(m,k,λ) design with p-rank r C= span C⊥:Fpm-r→Fpm is a (k-1)-SCC
Reed-Muller SCCs are optimal Hamada’s conjecture Hamada’s Conjecture (‘73):The 2-(pr,p,1) design that stems from the lines in Fprhas the smallest p-rank of all the designs with the sameparameters. the support of the low-weight words of the Reed-Muller code
Generalized conjecture Reed-Muller SCCs are “essentially optimal” Generalization of the conjecture: Relaxation in the following senses • dimension (rather than rank) • over different fields (i.e. q-dimension) • almost designs
Talk Outline Notions and current state Our contributions: highlights Our contributions: technical details Summary and open issues
Summary • Substantial improvement of best t-private PIR 1-private PIR ⇨ t-private PIR • t-private version of Yekhanin’s protocol • Interesting connection: SCC and t-private PIR Better SCC ⇨ better t-private PIR • SCC=LDC ⇨ 1-private=t-private PIR • Intriguing connection: SCC and p-rankdesigns Prove known SCC optimal ⇨ Hamada’s conjecture
RM SCC upper bound Yek07 LDC upper bound LDC lower bound SCC lower bound OpenIssues • Better t-private PIR • Extend Yek07 to 2-private 5-server PIR? … or even 2-private 8-server PIR? • LDC vs. SCC • Better SCC than Reed-Muller based e.g. 3-SCC of length 2o(√n) const. size alphabet • Better Lower bounds on SCC separate SCC from LDC or even super-polynomial lower bounds on SCC