330 likes | 454 Views
This presentation covers key findings from the study of direct CP violation (CPV) and rare decays in B physics, emphasizing recent results from the KEKB B-Factory. It includes discussions on CPV in Kp decays, the observation of p0p0, and analysis of polarization in B decays involving K*. Various methods like the Dalitz analysis for Khh and suppression techniques for continuum backgrounds are outlined. The results shed light on potential new physics avenues through detailed measurements and improved understanding of feed-down processes.
E N D
Direct CP and Rare Decays June 21, 2005B Physics at Hadronic Machines, Assisi
Outline • Machine, Detector, Basic Method • Direct CPV in Kp • Observation of p0p0 • Polarization in fK*, r+K*0 • Khh Dalitz Analysis • Baryonic Modes New Results only at LP05 and EPS
Electron 8 GeV Positron3.5 GeV KEKB B-Factory Tsukuba Mt. 3Km Υ(4S) (10.58GeV/c2) = 0.425
Luminosity 1 fb–1 per day peak luminosity = 15.81 /nb/sec (May 18, 2005)
e- e- e+ e+ B B B Signal Reconstruction In Υ(4S) rest frame: ∆E Mbc 1D-binned fit 2D-unbinned fit
Main background for hadronic rare B is continuum qq events. (q=u,d,s,c). Topology of continuum events and B decays are different. Choose |cosθThrust| S⊥ R2so R4so R2oo R3oo R4ooas input to Fisher, and combine it with cosθBto calculate the Likelihood Ratio. Define modified Fox-Wolfram moment: Use Fisher discriminant to optimize the coefficients. Υ(4S) B decay continuum events Background Suppression
Likelihood Ratio (LR) Optimize uds charm off reson. sideband
Evidence for DCPV in B Kp Y. Chao, P. Chang et al. PRL 2004 CLEO 1999 (PRL 2000) 253 fb–1 214053 evts ACP(K+p–) = –10. 1 ± 2.5 (stat) ± 0.5 (syst) % w/ BaBar > 5s 3.9s
AKp, AppSizable Ali @ ICHEP2004 Belle SU(3) relatesApp= -3AKp (Gronau & Rosner) BaBar Sizable T-P Strong Phase
AKp0≠AKp? Y. Chao, P. Chang et al. PRL 2004 253 fb–1 72834 evts ACP(K+p0) = 4 5 2% 2.4s from K+p- (3.6sw/ BaBar) Large EWPenguin? Large C ? d p0 _ d b s B- K- u u
Observation of B0p0p0 Y. Chao, P. Chang et al. PRL 2005 253 fb–1 8216 evts B = (2.32 ) x 10-6 0.44 0.48 0.22 0.18 5.8 s Use same flavor-tagging as TCPV analysis ACP = 4417% 53 52 Main limiting factor for f2 program from pp
Polarization in B fK* fK* polarization anomaly? But …?
Polarization in B fK* K.F. Chen et al., hep-ex/0503013, to appear PRL 253 fb–1
fK* Polarization transversity basis Naively
Angular Analysis for fK* Polarization Confirm fL ~ 0.5 4.3sevidence for FSI (strong phase)
New Physics Test with fK* Polarization T-odd CPV Datta & London 2004
Polarization in B r+K*0 J. Zhang et al., hep-ex/0503013, submitted PRL 253 fb–1 (2-d unbinned fit projections) Non-resonant r+K+p– Significant Take into account in Angular Analysis
Angular (fL) Analysis for r+K*0 helicity basis A0 A± NR-rKp Another pure-PfL ~ 0.5
KhhDalitz Analysis Summary A. Garmash et al., hep-ex/0412066, submitted PRD 140 fb–1
Model Kππ-AJ: SAJ(Kππ) = A1(K*(892)) + A0(K*0(1430)) + AJ(fX(1300)) + A0(cC0) + A1(ρ(770)) + A0(f0(980)) B+ K+π+π-: Model Fitting to Signal L=140 fb-1 Model Kππ-A0 Model Kππ-A0 fit the data with different spin assumptions
Model KKK-BJ: Helicity angle distributions: SBJ(KKK) = A1(φ(1020)) + AJ(fX(1500)) + A0(cC0) + ANR ANR Parameterizations used: ANR(s13,s23) = a1(e-βs13 + e–βs23)eiδ fX(1500) is best fit with the scalar hypothesis B+ K+K+K-: Model Fitting to Signal L=140 fb-1 Model KKK-B0 ANR(s13,s23) = a1eiδ ANR(s13,s23) = a1[(1/s13)b+ (1/s23)β]eiδ Model KKK-B0 fX(1500) φ(1020)
Null asymmetry tests: • qq related background: ACP(qq)=(-0.83±1.30)% • BB related background: ACP(BB)=(-1.15±2.18)% • B->Dπ->Kππ signal: ACP(Dπ)=(-1.16±0.86)% Search for DCPV in B± K±π+π- 253 fb–1 3115±92 evts N(B-) = 1637±68 N(B+) = 1492±65 preliminary N(K-π-π+) – N(K+π+π-) ACP(K±π+π-) = = (+4.6±3.0 ) % +1.7 -1.2 N(K-π-π+) + N(K+π+π-) Considered as a systematic error due to detector asymmetry
DCPV Hint in B+ ρ0K+ 253 fb–1 A 2.4σ hint for Direct CP violation in B±->ρ(770)0K± preliminary ACP(ρ0K±) = 27 ± 12 ± 2 % +59 - 3
Improved B+ ppK+ Measurement M.Z. Wang et al., PLB 2005 140 fb–1 21717 evts Threshold Peaking BF: 4.59 ± 0.50 x 10-6 (4.89 x 10-6, PRL92, 131801, 2004) Two-body not yet seen. +0.38- 0.34
B0 LL, Lp, pp and other 140 fb–1 M.C. Chang et al. PRD 2005 90% confidence level UL: B0pp< 4.1 x 10-7 B0Lp< 4.9 x 10-7 B0LL< 6.9 x 10-7 Belle:B+ J/pL < 4.1 x 10-5 BABAR:B+ J/pL< 2.6 x 10-5 B+ J/pp<1.9 x 10-5 BABAR, 81fb-1 Belle, 78fb-1
threshold peaking threshold peaking Threshold Peaking: ppKs &pLp
Angular Distribution: ppK+ p Өp X K+ bs dominant process Fragmentation picture p at pp rest frame s u K+ p u d u u s u u d p ppK signal Proton against K- (p against K+) : flavor dependence! (Expect symmetric distribution if effective 2-body)
Outline • Machine, Detector, Basic Method • Direct CPV in Kp • Observation of p0p0 • Polarization in fK*, r+K*0 • Khh Dalitz Analysis • Baryonic Modes New Results only at LP05 and EPS
Previous B+ ppK+,ppp+Measurement M.Z. Wang et al., PRL 2004 78 fb–1 Threshold Peaking