1 / 21

Dynamic Simulation of Red Blood Cell Rheology in a U-shaped Microtube

Dynamic Simulation of Red Blood Cell Rheology in a U-shaped Microtube. S.Y. Lin, Y.H. Chin, J.J. Hu, and A.J. Chung Department of Aeronautics and Astronautics National Cheng Kung University 2012 兩岸力學科技論壇 2012 年 4 月 21-28 日. Introduction.

Download Presentation

Dynamic Simulation of Red Blood Cell Rheology in a U-shaped Microtube

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dynamic Simulation of Red Blood Cell Rheology in aU-shaped Microtube S.Y. Lin, Y.H. Chin, J.J. Hu, and A.J. Chung Department of Aeronautics and Astronautics National Cheng Kung University 2012 兩岸力學科技論壇 2012 年4 月21-28 日

  2. Introduction • 以彈性之彈簧模型模擬紅血球結構變化,紅血球將由球體變形成雙凹圓盤型形狀。並研究在不同形狀微血管之管流中紅血球變化的動態情形。

  3. 形狀Shape 呈中央雙凹圓盤狀 直徑(Diameter): 6.0~9.5μm 厚度(Thickness):中心1.0μm;周圍2.0μm 平均表面積(Average area): 120 平均體積(Volume area):87 紅血球Red Blood Cell • 圖解生理學 中野 昭一著 趙德彰 譯

  4. Spring Network Model of Elastic RBC Membrane K.I. Tsubota, and S. Wada ”, International Journal of Mechanical Sciences, 2010.

  5. Level 0 Level 1 Level 3 Level 4 Unstructured Triangular Mesh3Dlevel 0~3 sphere of the nodal positionsin the Cartesian coordinates. W.X. Huang, C.B. Chang, and H.J. Sung, Journal of Computational Physics, 2011.

  6. Level =21 Nodes =2402 Edges =7200 Areas =4800 Spring Network Model of Elastic RBC Membrane

  7. Spring Network Model of Elastic RBC Membrane

  8. Various Shape Changes of Red Blood Cells • Level =21; Nodes =2402; Edges =7200; Areas =4800

  9. Various Shape Changes of a Swollen Red Blood • t=0.1 • t=0.3 • t=0.5 • t=0.7 • t=1.0 • t=0

  10. Step 1: Predictor Step 2: a) First corrector b) Second corrector PISO Scheme

  11. NW N NE vi,j,k D C Ui,j,k ui-1,j,k W P E pi-1,j,k pj,k pi+1,j,k A B vi,j-1,k SW S SE Staggered Grids

  12. The Flow Induced Deformation of Red Blood Cells in the U Tube U Tube: • PISO Scheme, Stagger Grid • MI=80, MJ=80, MK=120 • Radius =5μm • Initial data: U=0, V=0, W=0, P=1, ρ=1 Red Blood Cell: • Level=9, Nodes=386, Edges=1152, Areas=768

  13. The Flow Induced Deformation of Red Blood Cells in the U Tube U Tube: • PISO Scheme, Stagger Grid • MI=80, MJ=80, MK=120 • Radius =5μm • Initial data: U=0, V=0, W=0, P=1, ρ=1 Red Blood Cell: • Level=9, Nodes=386, Edges=1152, Areas=768

  14. The Flow Induced Deformation of Red Blood Cells in the Y Tube Y Tube: • PISO Scheme, Stagger Grid • MI=160, MJ=80, MK=120 • Initial data: U=0, V=0, W=0, P=1, ρ=1 Red Blood Cell: • Level=9, Nodes=386, Edges=1152, Areas=768

  15. Thanks for your attention!

More Related