Download Presentation
## Resolution Enhancement in MRI

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Resolution Enhancementin MRI**By: Eyal Carmi Joint work with: Siyuan Liu, Noga Alon, Amos Fiat & Daniel Fiat**Lecture Outline**• Introduction to MRI • The SRR problem (Camera & MRI) • Our Resolution Enhancement Algorithm • Results • Open Problems**Introduction to MRI**• Magnetic resonance imaging (MRI) is an imaging technique used primarily in medical settings to produce high quality images of the inside of the human body.**Introduction to MRI**• The nucleus of an atom spins, or precesses, on an axis. • Hydrogen atoms – has a single proton and a large magnetic moment.**MagneticResonance Imaging**• Uniform Static Magnetic Field – Atoms will line up with the direction of the magnetic field.**MagneticResonanceImaging**• Resonance – A state of phase coherence among the spins. • Applying RF pulse at Larmor frequency • When the RF is turned off the excess energy is released and picked up.**z**x y MagneticResonance Imaging • Gradient Magnetic Fields – Time varying magnetic fields (Used for signal localization)**MagneticResonance Imaging**• Gradient Magnetic Fields: 1-D Y B0 B1 B2 B3 B4 X**B1(t)**ω2 FT ω1 z1 z2 z3 z4 Signal Localization slice selection • Gradient Magnetic Fields for slice selection ω Gz,1 Gz,2 z**B0**Gx(t) t Signal Localizationfrequency encoding • Gradient Magnetic Fields for in-plane encoding x B=B0+Gx(t)x t**B0**Gx(t) t Signal Localizationphase encoding • Gradient Magnetic Fields for in-plane encoding x B=B0+Gx(t)x t**y**1-D path Wy Δkx Wx x k-space interpretation k-space DFT Sampling Points**MagneticResonanceImaging**Collected Data (k-space) 2-D DFT**The Super Resolution Problem**Definition: SRR (Super Resolution Reconstruction): The process of combining several low resolution images to create a high-resolution image.**SRR – Imagery Model**• The imagery process model: • Yk – K-th low resolution input image. • Gk – Geometric trans. operator for the k-th image. • Bk – Blur operator of the k-th image. • Dk – Decimation operator for the k-th image. • Ek – White Additive Noise.**SRR – Main Approaches**• Frequency Domain techniques Tsai & Huang [1984] Kim [1990] Frequency Domain**Back Projection**Current HR Best Guess Back Projected LR images Original LR images Iterative Refinement SRR – Main Approaches • Iterative Algorithms Irani & Peleg [1993] : Iterative Back Projection**SRR – Main Approaches**• Patti, Sezan & Teklap [1994] POCS: • Elad & Feuer [1996 & 1997] ML: MAP: POCS & ML**SRR – In MRI**• Peled & Yeshurun [2000] 2-D SRR, IBP, single FOV, problems with sub-pixel shifts. • Greenspan, Oz, Kiryati and Peled [2002] 3-D SRR (slice-select direction), IBP.**Resolution Enhancement Alg.**• A Model for the problem • Reconstruction using boundary values • 1-D Algorithm • 2-D Algorithm**Modeling The Problem**• Subject Area: 1x1 rectilinearly aligned square grid. (0,0)**Modeling The Problem**• True Image : A matrix of real values associated with a rectilinearly aligned grid of arbitrary high resolution. (0,0)**Modeling The Problem**• A Scan of the image: Pixel resolution – Offset – True Image Image Scan, m=2**Modeling The Problem**• Definitions: Maximal resolution – Pixel resolution = Maximal Offset resolution – • We can perform scans at offsets where with pixel resolution**Modeling The Problem**• Goal: Compute an image of the subject area with pixel resolution while the maximal measured pixel resolution is • Errors: 1. Errors ~ Pixel Size & Coefficients 2. Immune to Local Errors => localized errors should have localized effect.**0**C 0 C 0 C 0000 CCC Using boundary value conditions • Assumption: or Reconstruct using multiple scans with the same pixel resolution. • Introduce a variable for each HR pixel of physical dimension . • Algorithm: Perform c2 scans at all offsets & Solve linear equations (Gaussian elimination). 0 C**Using boundary value conditionsExample: 4 Scans, PD=2x2**Second sample**Using boundary value conditionsExample: 4 Scans, PD=2x2**0 0 0 0**Problems using boundary valuesExample: 4 Scans, PD=2x2**(0,0)**Problems using boundary valuesExample: 4 Scans, PD=2x2**(-1,-1)**Add more information**• Solve using LS • Propagation • problem Problems using boundary valuesExample: 4 Scans, PD=2x2**????**? ? ? ? ? ? ???? b x A Demands On the algorithm • No assumptions on the values of the true image. • Over determined set of equations Use LS to reduce errors: • Error propagation will be localized.**The One dimensional algorithm**• Input: Pixel of dimension • Notation: gcd(x,y) – greatest common divisor of x & y. (Extended Euclidean Algorithm)**The One dimensional algorithm**(Extended Euclidean Algorithm)**The One dimensional algorithm**Algorithm: Given w.l.g, let: a>0 & b<0 To compute , compute:**The One dimensional algorithmLocalized Reconstruction**Localized Reconstruction Effective Area: x+y high-resolution pixels**Two and More Dimensions**• Given pixels of size: Where x,y & z are relatively prime. Reconstruct 1x1 pixels. • Error Propagation is limited to an area of O(xyz) HR pixels. Stack 1-D Algorithm**Two and More Dimensions**gcd(xy,xz)=x gcd(xy,zy)=y 1-D Algorithm**Example Two dimensional reconstruction**PD=5x5 PD=15x1 PD=3x3**Example Two dimensional reconstruction**PD=4x4 PD=12x1 PD=3x3**Example Two dimensional reconstruction**PD=5x5 PD=20x1 PD=4x4**Larger Dimensions**Generalize to Dimension k Using k+1 relatively prime Low-Resolution pixels