Fondamenti di Programmazione Classe 2 (matricole congrue 1 mod 3) Docente: Prof. Luisa Gargano - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Fondamenti di Programmazione Classe 2 (matricole congrue 1 mod 3) Docente: Prof. Luisa Gargano PowerPoint Presentation
Download Presentation
Fondamenti di Programmazione Classe 2 (matricole congrue 1 mod 3) Docente: Prof. Luisa Gargano

play fullscreen
1 / 32
Fondamenti di Programmazione Classe 2 (matricole congrue 1 mod 3) Docente: Prof. Luisa Gargano
90 Views
Download Presentation
brigid
Download Presentation

Fondamenti di Programmazione Classe 2 (matricole congrue 1 mod 3) Docente: Prof. Luisa Gargano

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Fondamentidi Programmazione Classe2 (matricole congrue 1 mod 3) Docente: Prof. Luisa Gargano

  2. Finalità:basi teoriche della programmazione Testo:Aho, Ulman, Foundations of Computer Science –C Edition W.H. Freeman and Company, NY, 1994

  3. Informazioni Pratiche ORARIO: Martedì 16:00-18:00, Venerdì 9:00-11:00 N.B.: Tutte le lezioni sono ugualmente importanti! SITO WEB:http://www.dia.unisa.it/professori/lg/FP.html di riferimento per il materiale relativo al corso - copie delle slides, esercizi, - date delle prove, - comunicazioni varie, - etc.

  4. Suggerimenti • Avere già le slides a disposizione a lezione • EVITARE di lasciare accumulare il lavoro • Studiare volta per volta • Chiarire i dubbi di volta in volta • Fare gli esercizi

  5. Prove di Esame • Prova scritta con esercizi e teoria • (nessun materiale ammesso) • Eventuale prova orale • Requisito minimo: 40% del totale

  6. Progamma sintetico • Tecniche di programmazione (iterative e ricorsive) • Efficienza di programmi • Strutture dati elementari (liste, alberi) • Automi finiti

  7. ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo INPUT: dati iniziali INPUT:x,y,z AZIONI esempio: Somma x ed y Somma z al risultato OUTPUT: risultato OUTPUT: x+y+z Algoritmo: Sequenza di azioni per svolgere il calcolo Programma: Algoritmo espresso in notazione formale (linguaggio di programmazione) Creazione programma: Fase 1 = algoritmo Fase 2 = implementazione in dato linguaggio (C) SCOPO del CORSO: Elementi di base per semplici algoritmi e programmi

  8. Riepilogo del linguaggio C: Espressioni Espressione: formula (regola di calcolo) che specifica sempre un valore Esempio: espressione algebrica: z=x* y, (x+3)/5

  9. Riepilogo del linguaggio C: Espressioni Espressione: formula (regola di calcolo) che specifica sempre un valore Esempio: espressione algebrica: z=x* y, (x+3)/5 Espressionecompostada: Operatori Operandi (costanti, variabili,…)

  10. Riepilogo del linguaggio C: Espressioni Espressione: formula (regola di calcolo) che specifica sempre un valore Esempio: espressione algebrica: z=x* y, (x+3)/5 Espressionecompostada: Operatori Operandi (costanti, variabili,…) Operatori Algebrici: +, -, *, /, - unario, ++, --, % ( i%j= i modulo j= resto di i diviso j)

  11. Riepilogo del linguaggio C: Espressioni Espressione: formula (regola di calcolo) che specifica sempre un valore Esempio: espressione algebrica: z=x* y, (x+3)/5 Espressionecompostada: Operatori Operandi (costanti, variabili,…) Operatori Algebrici: +, -, *, /, - unario, ++, --, % ( i%j= i modulo j= resto di i diviso j) Operatori Logici: AND (&&), OR (||), NOT (!), (su variabili booleane - valore vero/falso) x AND y VERO se e solo se x,y VERE x OR y FALSO se e solo se x,y FALSE NOT x VERO se e solo se x FALSA

  12. Espressioni Operatori di confronto: Uguale “==“:x==y da VERO sse x e y hanno stesso valore Diverso “!=“: x!=y da VERO sse x e y hanno dalori diversi Minore “<“ Minore o Uguale “<=“ Maggiore “>” Maggiore o uguale “>=“

  13. ISTRUZIONI Assegnamento:x=E, Calcola il valore dell’espressione E e loassegna alla variabile x Esempio: x=x+y calcola il valore dix+y e lo assegna ad x se x vale 5 e y vale 3, x=x+y da ad x valore 8

  14. ISTRUZIONI Assegnamento:x=E, Calcola il valore dell’espressione E e loassegna alla variabile x Esempio: x=x+y calcola il valore dix+y e lo assegna ad x se x vale 5 e y vale 3, x=x+y da ad x valore 8 Istruzioni Strutturate: 1) Composizione di Istruzioni: Esegui I1, quando e’ terminata esegui I2, quando e’ terminata … esegui Im. x=1; y=2; x=x+y; (x vale 3) y=x*y (y vale 6)

  15. ISTRUZIONI Strutturate 2) Istruzioni Condizionali: If (C) I’ else I’’; C condizione, I’ ed I’’ composizioni di istruzioni Es. Poni z=0 se x<=y; poni z=x-y se x>y if (x<=y) z=0 else z=x-y

  16. ISTRUZIONI Strutturate 2) Istruzioni Condizionali: If (C) I’ else I’’; C condizione, I’ ed I’’ composizioni di istruzioni Es. Poni z=0 se x<=y; poni z=x-y se x>y if (x<=y) z=0 else x=x-y Poni z=0 se x<=y; altrimenti lascia il valore di z inalterato if (x<=y) z=0 If (C) I;

  17. Istruzioni Ripetitive for (x=1, x<=n, x++) I; I e’ una composizione di istruzioni Poni x=1 esegui I Modifica x (x=2), esegui I … Modifica x (x=n), esegui I y=0; for (x=1, x<=n, x++) y=y+x; x=1 FALSO, ESCI x<=n VERO I x++

  18. while ( C ) I; C e’ una condizione, I e’ una composizione di istruzioni x=1; y=0; while (x<=n) {y=y+x; x++} Falso, ESCI C Vero I

  19. do I while (C); x=1; y=0; do y=y+x; x++ while (x<=n) I Falso, ESCI C Vero n=0?

  20. Scegliere astrazione: definire un Insieme di dati che rappresentano la realta’ (modello di dati) Scegliere rappresentazione della informazione (struttura dati) Algoritmo e programma Risolvere problema Es. Archivio impiegati contiene insieme di dati rilevanti (astrazione) su ogni impiegato Rilevanti: Nome, stipendio, mansione Non rilevanti: altezza, peso, colore occhi, colore capelli

  21. Tipi di dati Variabile: e’ identificata da un nome ha associato un tipo (intero, reale,…) si possono conservare solo oggetti di tale tipo Tipi Base (in C): intero (int), reale (real), carattere (char) Definizioni di variabili int x definisce x come variabile di tipo intero

  22. Definizioni di Variabili ARRAY formato da componenti dello stesso tipo le componenti sono individuate da un indice int A[n] :array di n componenti di tipo intero Si accede ad una componente alla volta specificando l’indice int X[5] X[0]=10; X[1]=7; X[2]=4; X[3]=3; X[4]=8; Crea l’array di interi X:

  23. Array Es. cerca il numero di una componenti di un array A[n] avente valore w. idea: confronta w con A[0], A[1],… finche’ non hai esaminato tutto l’array, incrementa contatore ad ogni confronto positivo int A[n] int c=0; for(i=0,i<n,i++) if (A[i]==w) c++;} Assumiamo n=5 e w=3 c=0 A[0]=w=3 , c=1

  24. Array Es. cerca il numero di una componenti di un array A[n] avente valore w. idea: confronta w con A[0], A[1],… finche’ non hai esaminato tutto l’array, incrementa contatore ad ogni confronto positivo int A[n] int c=0; for(i=0,i<n,i++) if (A[i]==w) c++;} Assumiamo n=5 e w=3 i=1 A[1]!=3 c=1

  25. Array Es. cerca il numero di componenti di un array A[n] avente valore w. idea: confronta w con A[0], A[1],… finche’ non hai esaminato tutto l’array, incrementa contatore ad ogni confronto positivo int A[n] int c=0; for(i=0,i<n,i++) if (A[i]==w) c++;} Assumiamo n=5 e w=3 A[0]=w A[1]!=w A[2]=w A[3]!=w i=4=n-1 c=1 c=1 c=2 c=2 A[i]!=w c=2 i++ i++ i++ i++ i++, i=n, esci

  26. STRUCT Permette di “unire” elementi di tipi differenti. Struct S {T1 M1; T2 M2; … Tn Mn} Definisce una struttura con n campi (M1, M2, …, Mn) Di tipo T1,T2,…,Tn, rispettivamente. Es. Vogliamo descrivere persone usando 3 campi: (NOME, COGNOME, DATA-NASCITA)

  27. STRUCT Es. Vogliamo descrivere persone usando 3 campi: (NOME, COGNOME, DATA-NASCITA) 1) typedef char alfa[10] definisce il tipo alfa come un array di 10 caratteri 2) Struct data {int giorno; int mese; int anno} 3) Struct persona {alfa cognome; alfa nome; data data-nascita} Struct persona P P= (Mario, Rossi,(10,3,1980))

  28. STRUCT La componente i-ma di nome Mi della struttura S, S=(M1,…,Mi,…,Mn), si indica con S.Mi Es. Struct persona P= (Mario, Rossi,(10,03,1980)) P.nome e’ l’array contenete Mario P.nome[1] e’ il carattere a P.data-nascita e’ la struttura di tipo data (10,3,1980) P.data-nascita.mese e’ l’intero 3

  29. E’ possibile combinare array e strutture Es. Array di struct di tipo persona persona A[n] array di n componenti A[0],…,A[i],…,A[n-1] A[i] e’ una struct di tipo persona

  30. E’ possibile combinare array e strutture Es. Array di struct di tipo persona persona A[n] array di n componenti A[0],…,A[i],…,A[n-1] A[i] e’ una sruct di tipo persona Cerca il numero di persone nate a maggio {int c; c=0; for(i=0,i<n,i++) if (A[i].data-nascita.mese==5) c++;}

  31. PUNTATORI Una variabile di tipo puntatore contiene un indirizzo di memoria int x *p Definisce p come un puntatore alla variabile di tipo intero x P x

  32. PUNTATORI Una variabile di tipo puntatore contiene un indirizzo di memoria int x *p definisce p come un puntatore alla variabile di tipo intero x P=&x assegna a p l’indirizzo di memoria di x y=*p assegna a y il contenuto della variabile puntata da p Es. {p=&x; y=*p} risulta valore di x = valore di y