1 / 34

NEW APPROACH TO THE MUON g  2 AND EDM EXPERIMENT AT J-PARC

NEW APPROACH TO THE MUON g  2 AND EDM EXPERIMENT AT J-PARC. Motivation and goal Outline of new experiment Summary. Hiromi Iinuma (KEK) for New g-2/EDM@J-PARC collaboration. Motivation for Muon g-2 and EDM. Recent theoretical work HLMNT10(preliminary) 3.2 (Tau2010 ).

brant
Download Presentation

NEW APPROACH TO THE MUON g  2 AND EDM EXPERIMENT AT J-PARC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NEW APPROACH TO THE MUON g2 AND EDM EXPERIMENT AT J-PARC Motivation and goal Outline of new experiment Summary • Hiromi Iinuma (KEK) for • New g-2/EDM@J-PARC collaboration

  2. Motivation for Muon g-2 and EDM Recent theoretical work HLMNT10(preliminary) 3.2 (Tau2010) EDM upper limit:1.8 1019 e.cm (95% C.L.) PRD 80, 052008 (2009) + + + + + + + • Scaling from electron EDM • EDM~1025e.cm • A recent theoretical work • EDM = 1022~ 1024e.cm ? • G. Hiller et al. hep-ph/1008.5091v1 (2010, Aug.) Electric Dipole Moment Latest experimental result: PRD73, 072003 (2006) Standard model        Go beyond at least order of magnitude! http://pdg.lbl.gov/2009/reviews/rpp2009-rev-g-2-muon-anom-mag-moment.pdf

  3. B How to measure a =(g2)/2and EDM? Measure the muon precession frequency in the uniform magnetic field B < 0.1 ppm < 0.1 ppm “Non-zero EDM case” Measure two frequency vectors separately!!

  4. EDM=0 Great E821 and beyond the horizon Magic momentum + beam cancels focusing electric field term • More muons! Statistics uncertainty < 0.1 ppm (0.46ppm) • For the better B/B <0.1ppm ( 0.17ppm); • Compact storage ring to reduce the field volume • For the better a/a<0.1 ppm ( 0.21ppm); • Ultra-cold muon beam, even “off-magic” momentum • High granularity detector • Measuretwo frequency vectors separately for g2 and EDM measurements • Independent experimental approach provides independent      systematic studies for even clearer physics understanding!! 150 (g-2) Cycles in Positron Time Spectrum! PRD73, 072003 (2006) 2/a=4.4sec e+ B=1.45 Tesla、diameter 14m、45m round 12 magnet yoke pieces Ee+> 1.8 GeVcalorimetry

  5. J-PARC Facility (KEK/JAEA) High Intensity Muon Beam in JAPAN! J-PARC Thursday 10:00 Prof. N. Saito P, 3GeV KEK  -beam Tokyo P, 30GeV Bird’s eye photo in Feb. 2008

  6. 3 GeV proton beam ( 333 uA) New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam Graphite target (20 mm) Surface muon beam (28 MeV/c, 4x108/s) Muonium Production (300 K ~ 25 meV⇒2.3 keV/c) Surface muon Ultra Cold m+ Source Muon storage Muon LINAC (300 MeV/c) Step1: Ultra-Cold + Source and LINAC Laser Proton beam (3 GeV, 1MW, 25 Hz) MuonLinac (300 MeV/c) (2.3 keV/c) (28 MeV/c)

  7. 3 GeV proton beam ( 333 uA) New Muon g-2/EDM Experiment at J-PARC with Ultra-Cold Muon Beam Graphite target (20 mm) Surface muon beam (28 MeV/c, 4x108/s) Muonium Production (300 K ~ 25 meV⇒2.3 keV/c) Surface muon Super Precision Magnetic Field (3T, ~1ppm local precision) Ultra Cold m+ Source Muon storage Muon LINAC (300 MeV/c) Step2: Injection & storage + beam Step3: Detect decay e+ 0.66 m diameter =3 and B=3 [T] (note: 14 m for E821)

  8. Expected precession signal from J-PARC within a Snowmass year beam time ! Ee> 200MeV Default 50% pol. Study for high pol. Is ongoing.

  9. Example EDM wiggle, if EDM=210-20 e.cm example Expected sensitivity for EDM would be better than 210-20 e.cm

  10. R&D items are running! Step1: Ultra-cold + source and LINAC • Test experiments to search the best Mu production target are ongoing at TRIUMF and RAL ! • Hi Power Ly- Laser System R&D • LINAC R&D Step2: Injection & storage • See next few pages Step3: Detect decay e+ • Setup spin dependent muon-decay including EDM term in GEANT4 • Positron detector design • Hi-rate Si Tracker • Belle sensor with SiLCbased FEE GEANT4

  11. Back to Step2: Injection & storage • Technical difficulties: • 3T is too high to cancel fringe field by inflector, • Required kick angle (~60 mrad) is too big. 3D-spiral injection + Concept is simple but real design ?

  12. Storage ring magnet (ver.0 design) • 3T super conductive solenoid magnet • Uniformity in the beam storage region<0.1ppm • Careful design of fringe field for stable beam injection Tunnel for + beam Upper end cap (Iron) Pole tip (Iron) Cylindrical return yoke (Iron) 1.8m Super conductive Main coils Apply MRI technology! Inner radius 1.6m Upper half 4.6m 1ppm level at storage volume is achieved

  13. Storage ring magnet (ver.0 design) 3 tesla super conductive solenoid magnet Uniformity in the beam storage region<0.1ppm Careful design of fringe field for stable beam injection + 1.8m Upper half 4.6m + beam orbit diameter0.66m 2.1m round (cyclotron period=7.4 nsec)

  14. Beam acceptance study is ongoing y + Solenoid axis y<0 y>0 Start y<0 y>0 Beam acceptance

  15. Vertical kicker (ver.0) Helmholtz type Br(t)=Bpeaksin(t) ±10cm STOP! • Apply radial magnetic field to reduce beam vertical momentum • Prototype kicker is being designed for test. Coil

  16. Summary • A new muon g2 and EDM experiment at JPARC: • Off-magic momentum • Ultra-cold muon beam + compact g-2 ring • Independent experimental approach provides independent systematic uncertainty • Complementary to New g2@FNAL • Saturday 10:00 Prof. B. Lee Roberts • http://gm2.fnal.gov/public_docs/proposals/Proposal_g-2-3.0Feb2009.pdf • Active R&D efforts are ongoing! • My next step: Verification test for injection + kicker system

  17. J-PARC g-2/EDM collaboration • 71 members (…still evolving) • M. Aoki, P. Bakule, B. Bassalleck, G. Beer, A. Deshpande, S. Eidelman, D. E. Fields, M. Finger, M. Finger Jr., Y. Fujirawa, S. Hirota, H. Iinuma, M. Ikegami, K. Ishida, M. Iwasaki,T. Kakurai, T. Kamitani, Y. Kamiya, N. Kawamura, S. Komamiya, K. Koseki, Y. Kuno, O. Luchev, G. Marshall, M. Masuzawa, Y. Matsuda, T. Matsuzaki, T. Mibe, K. Midorikawa, S. Mihara, Y.Miyake, J. Murata, W.M. Morse, R. Muto, K. Nagamine, T. Naito, H. Nakayama, M. Naruki, H. Nishiguchi, M. Nio, D. Nomura, H. Noumi, T. Ogawa, T. Ogitsu, K. Ohishi, K. Oide, A. Olin, N. Saito, N.F. Saito, Y. Sakemi, K. Sasaki, O. Sasaki, A. Sato, Y. Semeritzidis, K. Shimomura, B. Shwartz, P. Strasser, R. Sugahara, K. Tanaka, N. Terunuma, D. Tomono, T.Toshito, K. Ueno, V. Vrba, S. Wada, A. Yamamoto, K. Yokoya, K. Yokoyama, Ma. Yoshida, M. H. Yoshida, and K. Yoshimura • 18 Institutions • Academy of Science, BNL, BINP, UC Riverside, Charles U., KEK, NIRS, UNM, Osaka U., RCNP, STFC RAL, RIKEN, Rikkyo U., SUNYSB, CRC Tohoku, U. Tokyo, TRIUMF, U. Victoria • 6 countries • Czech, USA, Russia, Japan, UK, Canada Thank you!

  18. Backups

  19. Br(t)=Bpeaksin(t) =/Tkick Requirements for Kicker • Field strength: • Bpeak = 1Gauss ~ 10 Gauss • Time distribution: • Tkick=150 nsec (c.f. 20 cyclotron periods) • Spatial distribution: • 33cm±5mm in radial direction, 1% uniformity • ±10cm in solenoid axis direction to reduce distortion o f • beam bunch shape • Minimal effect for positron detector: • Quench protection • Space problem • Eddycurrents on cryostat wall e+ detector (Silicon tracker)

  20. Kicker circuit and eddy current study R=60cm cryostat wall Start DAQ

  21. Injection orbit stability: Shallow vs. deep angle orbit 0 Br 510-4Tesla Smaller angle orbit gets bigger integral field effect Need to decrease 0.8 deg. 2 deg. 20% 5% • Small angle orbit requires “smooth” Br distribution • Smooth Br provides easy requirements for beam and kicker

  22. “good field region” weak magnetic focus? Focus condition0<n<1 n<1: for radial direction n>0 :solenoid axis direction If we require: We have n=3E-5 • 3D field measurement is needed…

  23. Field inside beam tunnel Cross-section1 Gauss Inside tunnel Cross section2 Cross section3 Cross section1 Outside Absolute field strength along the tunnel

  24. Field vectors Cross section1 Cross section2 8cm 10cm We are trying square and circle shapes Cross section3 50cm

  25. Field measurement =NMR frequency measurement Measure and  well better than 0.1ppm Muonium hyper splitting experiment to improve  (ongoing at J-PARC)

  26. Dominant uncertainty K. Hagiwara et al., PLB 649 (2007) 173-179 11659180.4  5.1 Theoretical calculation aSM= 10-10 QED 11658471.8  0.0 T.Kinoshita, M.Nio 693.2  5.1 QCD K.Hagiwara D. Nomura Dominant component~99% (ee ~73%) Weak 15.4  0.2 Recent ee experimental data made big contributions (BaBar, KLOE….)

  27. K. Hagiwara et al., PLB 649 (2007) 173-179 ! is a known function (PRD69 093003), Nambu-Goldstone boson’s exchange J. Prades, arXiv:0907.2938v1 M 0, ,’

  28. BNL, FNAL, and J-PARC

  29. Muon source Requrements: 40000 times more muons, and Cooler muon than RAL 670 times higher surface muon per spill at J-PARC 2.4 x 104/spill  1600 x 104/spill (25 spill/sec) Room temperature target (hot tangsten silica aerogel?) 2000K (15keV/c)  300K (2.3keV/c) 100 times intense laser 1mJ 100mJ 4x104 ultra-cold muon/spill with p=2.3keV/c

  30. g-2:Stored Energy / Cold MassK. Sasaki, T. Ogitsu, et al. • Not an extreme, but requires serious efforts • Material : NbTi /Copper • Cu/Sc ratio : 4 • Central Field:3T • Peak Field on Cable: 5.4 T • Nominal current : 417 A • Stored Energy : 23 MJ • Inductance : 264.5 H • Total mass : 3.7 t • Well within current Technology !

  31. g-2 silicon tracker • Detector area • 0.12 * number of vanes [m2] • 2.9 m2 for 24 vanes • Number of sensors • 384 for 24 vanes • Number of channels • Assume 0.2 mm pitch • 115k for 24 vanes* • *288k for multi-segments readout 576 mm 580 mm g-2 silicon tracker

  32. Silicon strip module Support Readout chip DSSD sensors front back 32

  33. Silicon sensor From Belle SVD page • Sensor type: Double-sided SSD • Chip size : ~12 cm x 6 cm • Thickness: 320 um • Readout: AC-couple • Depletion voltage : 80 V • Detector capacitance : ~100pF* • Strip pitch : 200um* • * to be determined by further studies. p-side n-side

  34. Spin equation (T-BMT equation + EDM) Our case:

More Related