660 likes | 689 Views
Explore theoretical methods in quantum non-equilibrium physics, from spin relaxation to micro-laser theory. Learn about projection operator formalism, spin relaxation processes, low field resonance, and decoherence control.
E N D
Theory of Quantum Non-equilibrium Physics -From Introduction to Outlook – Ochanomizu University F. Shibata
(1) Introduction –Outlook of several theoretical methods (2) Projection operator formalism F. S., T. Arimitsu, M. Ban and S. Kitajima, “Physics of Quanta and Non-equilibrium Systems”, chap. 3, (University of Tokyo Press, 2009, in Japanese) H.-P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems” (2006, Oxford ) (3) Spin relaxation (i ) F.S., C. Uchiyama, J. Phys. Soc. Jpn., 62 (1993) 381. “Rigorous solution to nonlinear spin relaxation process” (4) Spin relaxation (ii ) Y. Hamano, F.S., J. Phys. Soc. Jpn., 51 (1982) 1727. “Theory of spin relaxation for arbitrary time scale”
(5) Low field resonance : exact solution F.S.-I. Sato, Physica A 143 (1987) 468. “Theory of low field resonance and relaxation Ⅰ” (6) Micro-Laser theory C. Uchiyama, F. S., J. Phys. Soc. Jpn., 69 (2000) 2829. “Self-organized formation of atomic coherence via photon exchange in a coupled atom-photon system”. (7) Decoherence control S. Kitajima, M. Ban and F.S., J. Phys. B 43 (2010) 135504. “Theory of decoherence control in a fluctuating environment” (8) Outlook
(1) Introduction – Outline of several theoretical methods Damping theory : (a) Projection operator method (b) Schrodinger picture versus Heisenberg picture (c) Time-convolution (TC) type versus Time-convolutionless (TCL) type Path integral theory : Feynman – Vernon, Caldeira – Leggett Non-equilibrium Green’s function : Schwinger - Kerdysh ・・
(2) Projection operator formalism Basic equations in Interaction picture (Schrodinger's view) ・・ Physics of Quanta and Non-equilibrium Systems”, chap. 3, (University of Tokyo Press, 2009, in Japanese) Hamiltonian Liouville-von Neumann equation where
Perturbation expansion formulae TC type formula
Heisenberg picture Mori equation where Projection operator
(3) Spin relaxation (Ⅰ): Rigorous Solution to Nonlinear Spin Relaxation Process J. Phys. Soc. Jpn. 62 (1993) 381 1. Preliminaries Time evolution of the nonlinear spin relaxation process
C-number equation for a normally mapped (quasi-)probability density where
2. Method of solution For , ・・・(1) where with
An exact solution is given by the form of a continued fraction: where
3. Averages and Fluctuations The average of the spin operator The second moments of the spin operator
(4) Spin relaxation (Ⅱ): Theory of Spin Relaxation for Arbitrary Time Scale J. Phys. Soc. Jpn. 51 (1982) 1727 1. Reduced Density Operator Hamiltonian
Time evolution of a reduced density operator for the relevant system where
・・ In the Schrodinger picture The moment equations
2. Longitudinal Relaxation solution
3. Transverse Relaxation solution
References • F. S., Y. Takahashi and N. Hashitsume, J. Stat. Phys. 17 (1977) 171. • S. Chaturvedi and F. S., Z. Phys. B35 (1979) 297. • F. S. and T. Arimitsu, J. Phys. Soc. Jpn., 49 (1980) 891.
Low field resonance : exact results • Theory of low field resonance and relaxation Ⅰ Physica 143A (1987) 468 1. Basic formulation Hamiltonian Liouville-von Neumann equation in the interaction picture The projection operator
The average of an arbitrary operator The time-convolution (TC) equation
A basic equation The “self-energy”
A power spectrum The longitudinal spectrum The transverse spectrum
2. Two-state jump Markoff process Longitudinal relaxation Transverse relaxation Non-adiabatic case Non-adiabatic case
The time evolution of the longitudinal function for the low field; (a) for overall and (b) for the short time. The process is the two-state-jump. Physica 143A (1987) 468
The time evolution of the transverse function for the low field; (a) for overall and (b) for the short time. The process is the two-state-jump. Physica 143A (1987) 468
3. Gaussian-Markoffian process 3.1 The longitudinal relation : Non-adiabatic case
References • R. Kubo and T. Toyabe, in: Proc. of the XIVth Colloque Ampere Ljubljana 1966, Magnetic Resonance and Relaxation, R. Blinc, ed. (North-Holland, Amsterdam, 1967) p.810. • R. S. Hayano, Y. J. Uemura, J. Imazato, N. Nishida, T. Yamazaki and R. Kubo, Phys. Rev. B20 (1979) 850. • Y. J. Uemura and T. Yamazaki, Physica 109 & 110B (1982) 1915; and references cited therein. • Y. J. Uemura, Doctor Thesis, University of Tokyo (1982). • 4) E. Torikai, A. Ito, Y. Takeda, K. Nagamine, K. Nishiyama, Y. Syono and H. Takei, Solid State Commun. 58 (1986) 839.
(6) Micro-Laser theory : Self-organized formation of atomic coherence via photon exchange in a coupled atom-photon system J. Phys. Soc. Jpn., 69 (2000) 2829 1. Basic equations Hamiltonian Liouville-von Neumann equation for a reduced density operator
2. Method of solution The normally mapped (quasi-)probability density
(7) Decoherence control : Theory of decoherence control in a fluctuating environment J. Phys. B 43 (2010) 135504 1. Preliminaries The characteristic function