240 likes | 330 Views
Explore advanced interference setup and optics estimation for electron beams with FLASH properties, including modulation and impedance calculations for energy and density modulation. Evaluate 1D and 3D estimations for beam properties, including longitudinal dispersion and energy spread. Simulate current distribution and behavior post-chicanes for SASE undulators.
E N D
sFLASH SASE interference setup & optics rough estimation 1d estimation 3d estimation summary
setup & optics from
estimated electron beam properties E 585 MeV Erms 150 keV n 1.5 µm q 0.3 nC Ipeak 1.5 kC estimated photon beam properties modulator undulator K = 4.3 L = 1.45 m
modulation amplitude undulator FLASH @ 19 nm laser
x / m y/ m vertical correctors quads undulators chicane 1 chicane 2 chicane 3
rough estimation 1 2 (1) - energy modulation (2) - conversion to density modulation, chicane 1, r56c1 = 220 µm (saturation)
if linear: 2 3 4 (23) - discrete impedance, L 23 m, av 10 m from 15 amplification of energy modulation (3) - chicane 1, r56c3 = 170 µm 10 amplification of density modulation (34) - discrete impedance, L 16 m, av 10 m
1d estimation 1 2 3 4 5 1 discrete modulation 12 discrete impedance, L = 2.6 m, av = 10.6 m 2 discrete longitudinal dispersion, chicane 1, r56 = 220 µm 23 discrete impedance, L = 4.7 m, av = 10.1 m 3discrete longitudinal dispersion, chicane 2, r56 = 3µm 34 discrete impedance, L = 17.7 m, av = 7.7 m 4discrete longitudinal dispersion, chicane 3, r56 = 170 µm 45 discrete impedance , L = 16.3 m, av = 9.8 m
1d estimation 40E6 macro particles energy modulation: discrete in middle of modulator space charge interaction: discrete, 1d no CSR interaction next slide: explore linear domain initial modulation amplitude initial uncorrelated energy spread
longitudinal phase space current
MeV MeV non linear !!! ~ 3 MeV rms energy spread
MeV MeV non linear !!! ~ 3.5 MeV rms energy spread
~ 3.5 MeV rms energy spread 3D ~ 2 MeV rms
3d estimation 20E6 macro particles modulation: Emod = 250 keV discrete in middle of modulator (= instantaneous) space charge interaction: full 3d Poisson solver equidistant mesh: 15 µm × 15 µm × 800 nm/(10) step width: 2 cm (beam-line coordinate) no CSR interaction
3D Calculation Emod = 250 keV current bunch coordinate / m beam line coordinate / m
3D Calculation ~ 2.5 m Emod = 250 keV after chicane 1 before chicane 2 Current / A rms spread in 400 nm “slice” rms spread in 400 nm “slice” _rms / eV / eV bunch coordinate / m
3D Calculation ~ 14.6 m Emod = 250 keV after chicane 2 before chicane 3 Current / A rms spread in 400 nm “slice” rms spread in 400 nm “slice” _rms / eV / eV bunch coordinate / m
3D Calculation ~ 14.2 m Emod = 250 keV after chicane 3 before SASE undulator Current / A 50 µm, 170 fsec rms spread in 400 nm “slice” rms spread in 400 nm “slice” _rms / eV ~ 2 MeV rms 15 µm, 50 fsec / eV bunch coordinate / m
3D Calculation Emod = 250 keV current / A bunch coordinate 1E-4 / m beam line coordinate / m
current/A beam line coordinate/ m bunch coordinate/ m “side view” current/A period of plasma oscillation 120 m beam line coordinate/ m
summary modulator: 1d estimation (without plasma osc.): linear gain ~ 100 saturation even with minimal modulation 3d estimation: plasma oscillations, period 120 m gain length (Ming Xie) weak amplification in 30 m SASE undulator
First Shot at Statistics • Assume laser pulse eliminates lasing within FWHM completely • Take a few hundred SASE simulation results (0.25 nC) and apply the above • Let the ‘laser pulse’ jitter by about 100 fs
Comparison to Observation The rough estimate Observed behavior Energy in photon pulse Electron macro pulse number