140 likes | 234 Views
Explore the process of virus wrapping and budding through dynamical simulations, from attachment to cell membrane fusion. Study membrane models, interactions, simulation results, system behaviors, phase diagrams, elastic theory, energy maps, and budding dynamics.
E N D
Dynamical simulations of virus wrapping and budding T. Ruiz-Herrero1, M. F. Hagan2, E. Velasco1 • Universidad Autónoma de Madrid, Madrid, Spain • Brandeis University, Waltham, MA, USA
INTRODUCTION exiting the cell Budding acquiring membrane coating Attachment to the cell membrane Wrapping Fusion of the final neck Budding steps 1/13 T. RUIZ-HERRERO
polar head Hydrophilic tail COARSE GRAINING 2/13 T. RUIZ-HERRERO
Vrep Vbond Vbend Vatrr MEMBRANE MODEL:cooke model [Cooke et al, Phys. Rev. E, 72 (2205)] 3/13 T. RUIZ-HERRERO
A/σ2 κ/ε0 ωC ωC MEMBRANE MODEL CHARACTERISTICS ● Broad range of fluidity ● Easily tunable ● Good agreement with measurements: rigidity, diffusion, density kBT/ε0=1.1 [from Cooke et al,Phys Rev E, 72 (2205)] Area per molecule Bending rigidity 4/13 T. RUIZ-HERRERO
MEMBRANE PARTICLE INTERACTION AND SIMULATION CHARACTERISTICS Membrane-particle interaction s s=R-σ/2 • Simulation characteristics: Important parameters: • Molecular dynamics simulation R • NPT ensamble ε • Langevin thermostat kBT/ε=1.1 ωc κ,ρ • Andersen barostat P=0 • Verlet algorithm 5/13 T. RUIZ-HERRERO
SIMULATIONS RESULTS: MAIN BEHAVIORS WRAPPING NON-WRAPPING MEMBRANE BREAKING 6/13 T. RUIZ-HERRERO
/0=1e3 /0=5e3 /0=3e4 /0=1e4 SYSTEM BEHAVIOR 1: NON-WRAPPING 7/13 T. RUIZ-HERRERO
/0=5e3 /0=5e2 /0=1.5e4 /0=1.55e4 /0=1.6e4 /0=1.65e4 SYSTEM BEHAVIOR 2: WRAPPING 8/13 T. RUIZ-HERRERO
/0=6e3 /0=7e3 /0=5.5e3 /=7.5e3 /0=9.5e3 /0=1e4 SYSTEM BEHAVIOR 3: MEMBRANE BREAKING 9/13 T. RUIZ-HERRERO
/kBT=12.5 R/σ=10 ε/ε0 R/σ /ε0 PHASE DIAGRAMS ε/ε0 In general, good agreement between simulations and theory Subtle dependence on bending coefficient For small epsilons deviation from theory 10/13 T. RUIZ-HERRERO
ELASTIC THEORY 11/13 T. RUIZ-HERRERO
ENERGY MAPS AND BUDDING PATHWAYS ε/ε0=0.9 ε/ε0=0.7 θ[rad] θ[rad] Penetration[σ] ε/ε0=1.1 Penetration[σ] θ[rad] Penetration[σ] 12/13 T. RUIZ-HERRERO
BUDDING DYNAMICS: TIME SCALES AND PENETRATION Penetration vs time • steepness of the budding pathway ---> process speed • strenght adhesion energy ---> maximum penetration 13/13 T. RUIZ-HERRERO