evaluacion de probabilidades n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Evaluacion de probabilidades PowerPoint Presentation
Download Presentation
Evaluacion de probabilidades

Loading in 2 Seconds...

play fullscreen
1 / 26

Evaluacion de probabilidades - PowerPoint PPT Presentation


  • 164 Views
  • Uploaded on

Heuristicas (atajos) Representativo Accesible Anclado. Errores & sesgos Ignorar probabilidades Falacia del jugador Falacia de conjuncion Correlaciones ilusorias Tendencia a confirmar. Evaluacion de probabilidades . Heuristica :

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Evaluacion de probabilidades' - bell


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
evaluacion de probabilidades
Heuristicas (atajos)

Representativo

Accesible

Anclado

Errores & sesgos

Ignorar probabilidades

Falacia del jugador

Falacia de conjuncion

Correlaciones ilusorias

Tendencia a confirmar

Evaluacion de probabilidades
slide2

Heuristica:

- Un atajo para la evaluar probabilidades y tomar decisiones

- Rapido y eficiente, pero

- vulnerable al error.

Algorithm:

- garantiza la respuesta correcta

- ineficiente (caro desde el punto de vista computacional)

slide3
A Carlos lo eligieron para una entrevista en forma aleatoria (randomizada). De la entrevista, nos enteramos que Carlos es una persona timida, de baja estatura, a la que le gusta mucho leer libros. En el colegio era buen alumno pero sus companieros lo tenian a maltraer. Usted diria que Carlos hoy trabaja de:
  • Obrero de la construccion
  • Escritor

Por que la gente dice ‘escritor’?

Porque la similitud: la descripcion es representativa (tipica) de los escritores

slide4

Atajo # 1: Es Representativo

La tendencia a juzgar un evento como mas probable si “representa” (describe) los razgos tipicos de la categoria.

(en otras palabras, el individuo se parece al prototipo)

Por que es util?

- Los razgos tipicos tienden a ser mas frequentes que los atipicos

Por que a veces es este atajo es enganioso?

- Porque no tiene en cuenta:

- las probabilidades previas

- que algunos procesos son aleatorios

slide5

Ignorando las probabilidades previas:

(base rate neglect)

Al estimar cuan probable es algo, la gente tiende a ignorar cuan frecuente es eso en general.

Por ejemplo,

En Buenos Aires, la gripe es mucho mas frecuente que el dengue.

slide6

Ejemplo

• Hay un accidente de taxi en el que el taxista no se detuvo a ayudar

• Hay dos companias de taxis en la ciudad.

• La compania taxi azul tiene 1000 autos en la calle,

• La compania taxi verde tiene 50 autos en la calle.

• El testigo cree que el auto que no se detuvo era verde

• Por otras pruebas sabemos que nuestro testigo acierta el 90% de las veces en que testifica.

Dada esta informacion:

- es mas probable que el taxi haya sido azul o verde?

slide7

Imagina que al testigo le pedimos que diga si el taxi es verde o azul, y que lo haga para cada uno de los taxis de la ciudad ...

El testigo dira

1000 taxis azules

900 “azul”

100 “verde”

La mayoria de las veces que dice ‘verde’, esta equivocado!

(100/145 errores)

50 taxis verdes

5 “azul”

45 “verde”

En este caso, las probabilidades previas son mas influyentes que la informacion diagnostica

slide8

Ignorar las probabilidades tiene consequencias en la vida real:

  • Por ej., supone que:
  • que cuando hay un cancer de mama, la mamografia lo detecta el 85% de las veces (hit rate), y
  • que cuando no hay cancer la mamografia es negativa el 90% de las veces (correct rejection rate)*.
  • Supone que la probabilidad de cancer en la poblacion que estas estudiando es de 1%
  • Si el mamograma da positivo, cual es la probabilidad de que la paciente tenga realmente cancer?

* Ojo! Estos numeros son inventados (para simplificar las cuentas), pero aun asi la logica es correcta.

slide9

Que indica el mamograma

Cancer No Cancer Total

Hay cancer 850 150 1,000

No hay cancer 9,900 89,100 99,000

Cuando el mamograma indica cancer, la probabilidad de que exista cancer es solo 8% (850/10,750).

O sea, un mamograma positivo es razon para hacer mas evaluaciones, pero la probabilidad de que sea maligno es baja

Los medicos muchas veces no entienden esta logica

Que hay

realmente

slide10

Por ej:

  • Estudiantes de medicina de Harvard leen este caso:
  • Imagina una enfermedad que tiene una prevalencia de uno en mil (1/1000) y un test de diagnostico que detecta todos los casos (hit rate: 1) pero tiene un 5% de falsa alarmas (false positives). Si a tu paciente el test le da positivo, cuan probable es que tenga la enfermedad?
  • De 1000 personas, one tiene la enfermedad (1/1000):
  • O sea de 1000 casos va a haber 1 caso real (hit) y 50 falsa alarmas (5%)
  • - La probabilidad de que tu paciente tenga la enfermedad es 1/51 (1.96%)
  • - La mitad de los estudiantes cree que la probabilidad es 95%! (burros!)
slide11

La falacia del jugador

Si tiras una moneda, que secuencia es mas probable?

(C=cara, c=ceca)

1. c C C c c c C c C

2. c c c c c c c c c

slide12

La Falacia del jugador:creer que los resultados anteriores ejercen influencian en eventos aleatorios.

Por que ocurre?!

En secuencias aleatorias, a la larga cara y ceca se alternan.

Por lo tanto, una secuencia en que cara y ceca se alternan es mas tipica (similar) que una en la que son todas ceca.

Si alguien saca 10 cecas seguidas, pensamos que hace trampa

Si alguien mete 4 baskets seguidos, creemos que esta en una racha

basketball
Basketball
  • El hincha cree que los jugadores de basket tienen rachas de inspiracion para embocarla (hot hands)(91% de hinchas cree esto)
  • Los investigadores analizaron en los partidos.

- La probabilidad de embocarla despues

      • Haber embocado 1, 2, or 3 tiros.
      • Errado 1, 2 or 3 tiros.
    • No hay diferencia
  • Como explicar el error del hincha? 4 baskets al hilo parece raro (atajo de ‘representatividad’), debe haber algo mas.
slide14

Linda tiene 31 anios, es soltera, dice lo que piensa, y es muy inteligente. Estudio filosofia en la facultad y temas de pobreza y justicia social. Es vegetariana y hace demostraciones a favor del medio ambiente. Que es mas probable? Que Linda

  • Empleada de banco
  • Empleada de banco miembro del movimiento feminista
falacia de conjuncion
Falacia de Conjuncion

empleada feminista

de banco

slide16

Atajo # 2: Acceso a ejemplos

  • Que tareas del hogar haces vos generalmente, y cuales tu esposa/o? (e.g. sacar la basura, lavar los platos, etc.)
  • - Mujer: dice hacer 16/20 de las tareas
  • - Marido: dice hacer16/20 de las tareas Ross and Sicoly (1979)
  • Como puede ser?
  • Me acuerdo que ayer lave los platos, pero no recuerdo que mi seniora los haya lavado (vs. ella recuerda cuando ella los lavo)
slide17

Acceso a ejemplos

Que es mas comun, palabras que empiezan con E o palabras que tiene la letra E como tercer letra?

Es mas facil obtener ejemplos de E inicial

slide18

Acceso a Ejemplos

la tendencia a evaluar la probabilidad en base a cuan facil nos viene la informacion a la cabeza.

Por que este atajo es util?

- Cosas que ocurren frequentemente son mas facil de recordar (pensa palabras que empiezan con X)

Por que a veces nos engania?

- La frecuencia es solo una de los factores que influyen nuestro acesso a la memoria. Otros factores son:

--Como organizamos la informacion en memoria (letra “E” inicial)

-- Cuan reciente es el ejemplo (propagandas, TV)

-- Familiaridad (“cuanta gente va a la facu? A la carcel?”)

slide19

Acceso a ejemplos: Un experimento

- Mantene la frecuencia constante

- Manipula el acceso a ejemplos

- Pedi al participante que estime la frequencia

Todos leen lista de nombres:

- 50% nombres de hombre,50% de mujer

- Group A: Algunos nombres de hombre son famous (riquelme)

- Group B: Algunos nombres de mujer son famosos

Test: hay mas hombres o mujeres en la lista?

atajo 3 anclar ajustar
Atajo #3: Anclar & Ajustar
  • Haces una estimacion inicial, seguida de ajustes basados en la informacion siguiente.
  • El problema es que
    • Ponemos demasiado enfasis en el valor inicial (ancla) , aun cuando sabemos que el valor inicial de referencia es arbitrario
    • No ajustamos lo suficiente
slide21

“10”

“Cual es el porcentaje de paises africanos en las Naciones Unidas? Respuesta: ‘25%’

“Cual es el porcentaje de paises africanos en las Naciones Unidas? Respuesta: ‘45%’

“65”

Ancla: Ejemplo

slide22

Correlaciones Ilusorias

--Tener una educacion universitaria aumenta tu salario?

-- La virtud en el area familiar (e.g, ser infiel) predice la capacided con la cual la persona puede governar un pais?

-- Perro que ladra no muerde?

Las correlaciones que percibimos son influenciadas por dos variables

- La evidencia que observamos

- Nuestras teorias --> Correlaciones Ilusorias

slide23

Cuando la gente observa la evidencia sin preconceptos...

… ve correlaciones donde las hay, y no donde no las hay

slide24

Cuando la gente tiene sus teorias ….

… ve correlaciones donde no las hay!

Lo mismo ocurre en la ciencia, pero por suerte siempre hay algun enemigo que tiene una teoria opuesta

Jennings, Amabile, & Ross, 1982

slide25

Correlaciones Ilusorias: Posible Mecanismo

Tendencia a Confirmar.Notamos y recordamos las cosas que coinciden con nuestro punto de vista.

Es mas facil recordar ejemplos de datos que coinciden con nuestra teoria.

Este facil acesso a ejemplos nos causa un sesgo en la evaluacion

en resumen
Heuristicas (atajos)

Representativo

Accesible

Anclado

Errores & sesgos

Ignorar probabilidades

Falacia del jugador

Falacia de conjuncion

Correlaciones ilusorias

Tendencia a confirmar

En resumen