1 / 4

F.Garibaldi – TOPEM phone meeting 26-05-2010

F.Garibaldi – TOPEM phone meeting 26-05-2010. Ordine del giorno 1. Introduzione   (Franco) 2. Breve discussione della elettronica (ASIC e il resto) per avere anche un parere di Angelo) (Paolo/Alessandro e Antonio/Flavio)

Download Presentation

F.Garibaldi – TOPEM phone meeting 26-05-2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. F.Garibaldi – TOPEM phone meeting 26-05-2010 Ordine del giorno 1. Introduzione  (Franco) 2. Breve discussione della elettronica (ASIC e il resto) per avere anche un parere di Angelo) (Paolo/Alessandro e Antonio/Flavio) 3. Stato e prospettive delle varie parti del sistema in funzione dei 4 items dei referees circa lo studio di fattibilita’ - layout del sistema e problemi connessi - FOV e simulazione (Franco)                 - effetti della PET su c.m. MRI (e vice versa) (Franco)                 - TOF (vantaggi) (Franco) - misure di timing- PMT (De Leo/Perrino)- SiPM (Finocchiaro/Cosentino)                 - elettronica - architettura (Paolo/Alessandro) - ASIC (Antonio/Flavio/ Angelo (gigatracker)   - temperatura, sua misura e feedback sulla elettronica (Meddi) - SiPm (altre misure (PDE etc)) (Cosentino) - scintillatori (caratterizzazione) (De Leo)- altro...... • e’ necessario rispondere alle 4 richieste dei referees (Luglio/Settembre Dicembre) • a) realizzazione di un rivelatore PET composto da due testate delle dimensioni di circa 2 x 2 cm2 con cristalli pixellati di LYSO/LSO e lettura della luce di • scintillazione mediante array di SiPM; b) verifica della sua compatibilita_ con MRI mediante test degli effetti del campo magnetico sull_imaging PET e degli effetti dell_apparato PET sull_ imaging MRI; c) studio della coincidenza temporale con SiPM per valutare i vantaggi della tecnica ToF sull_imaging prostatico; d) progettazione di un front-end integrato per la lettura e l_analisi timing dei SiPM. • La Commissione ritiene che i risultati dello studio di fattibilita’ siano vincolanti ai fini del prosieguo dell_esperimento. Dobbiamo cercar di capire l’evoluzione dell’esperimento, a partire dal prossimo anno (cosa fare, cosa chiedere) Dobbiamo mostrare di aver affrontato tutti i problemi (inclusi quelli di compatibilita’ con MRI e “pratici” (dimensioni, layout, etc). Non possiamo proporre cose (eventualmente) non fattibili. [ problemi legati alle dimensioni, alla temperatura, architettura del readout (tutto dentro vicino al rivelatore? Tutti i segnali fuori mediante tab bonding? Etc. etc. Non dico che dobbimamo aver “risolto” i propblemi, ma mostrare di correttamente impostati avendo idee su come risolverli “realisticamente”. Informazioni da Mozinski: Hi Franco, Timing tests are done with a small LSO (3x3x3 mm). Timing is improved down to 220 ps per one detector due to a current preamp and a higher bias voltage. But this is not yet a full optimization. Tomek has waited a longtime for the home made preamp, but it was sufficient to get first results and submit abstract for IEEE in Knoxville. Please call tome on Monday. Best regards Marek. (stiamo pensando di invitarlo per qualche giorno a Bari fine giugno/primissimi di Luglio) Informazioni sui radiotraccianti: (mail da Martin Pomper (Jhohns Hopkins) Yes... we have progress with the radiotracer.  It has been slow, but we finished the validation runs for our new PET probe last week and are now applying to our IRB for the "first-in-man" study, which should be in about eight weeks. 
Thanks for keeping me updated.
Marty

  2. FOV e TOF BGO_nonzero :1012 LSO_nonzero :3668 LSO_single = 1886 BGO_single = 634 LSO_BGO_coincidence = 33 Only_BGO 905 BGO_nonzero :1065 LSO_nonzero :2376 LSO_single = 1269 BGO_single = 697 LSO_BGO_coincidence = 35 Only_BGO 977 BGO_nonzero :1105 LSO_nonzero :2351 LSO_single = 1184 BGO_single = 718 LSO_BGO_coincidence = 31 Only_BGO 1026 center source BGO_nonzero :1037 LSO_nonzero :6523 LSO_single = 3413 BGO_single = 645 LSO_BGO_coincidence = 65 Only_BGO 869 BGO_nonzero :1142 LSO_nonzero :1282 LSO_single = 705 BGO_single = 773 LSO_BGO_coincidence = 0 Only_BGO 11 TOF-PET advantage ~ sqrt(Delta_T) Field of view (FOV)

  3. Simulazioni (Roma1 – ISS)

  4. Effetti della PET su MRI e viceversa Si veda per esempio Pichler-nature.pdf e pichler nature supplement.pdf. Inoltre pet-mri-pichler.pdf (in particolare pg 8 e 9) In comparison to the previous work (19) carriedout with large hybrid amplifiers, the 9 APD signals are now fed into a highly integrated 9- channel charge sensitive preamplifier (Siemens Preclinical Solutions, USA) (17). The output signals of the preamplifier are buffered and led outside the magnet by 6 m fully 9/2727 shielded non magnetic coaxial cables (Leoni, Germany). All electronic parts are selected to be non magnetic and mounted on a custom made 6-layer printed circuit board (PCB) which has a flexible connection between the APD and the preamplifier in order to allow a height adjustment of the LSO-APD detector in the radial position of the gantry (Fig 2). The PCB was optimized for operation in a high magnetic field to keep eddy currents in and ground planes low. While the LSO-APD detector, preamplifier, and buffers (Fig 2) are residing inside the magnet, the 9 analog signals are processed, outside the 5 Gauss line, with a custom made 9 to 4 analog multiplexer, providing event position and energy information from the 12 x 12 crystal block. For the test setup used in this work, the analog signals were post processed with standard nuclear instrument modules (NIM) analog-to-digital conversion achieved by using a PD2-MFS-8 2M/14 data acquisition (DAQ) board (United Electronic Industries Inc., USA) mounted in a standard PC (20). For the final detector ring, dedicated PET electronics (Siemens Preclinical Solutions) will be sed to digitize the signals and perform the coincidence processing of all 10 detectors. Based on problems seen in preliminary studies (19), we used double-sided printed circuit board (PCB) material coated with 10 μm copper for electromagnetic shielding to protect the PET front-end electronics from distortions induced by MR sequences. The copper layer of this material was only 10 μm thin to avoid artifacts in MR images by eddy currents induced in the material. The copper material was jet-cut into pieces and soldered together at the edges to form a solid box (Fig 2).

More Related