1 / 35

Model Calibration Test Cases

Model Calibration Test Cases. Bernie Lesieutre. WECC MVWG, Salt Lake City, UT, June 18, 2013. Model Calibration Test Cases. Data from 7 simulated events 3 sets used for model calibration 4 sets used for model consistency check

ami
Download Presentation

Model Calibration Test Cases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Model Calibration Test Cases Bernie Lesieutre WECC MVWG, Salt Lake City, UT, June 18, 2013

  2. Model Calibration Test Cases • Data from 7 simulated events • 3sets used for model calibration • 4 sets used for model consistency check + model independently checked by others (Dmitry) using data from other events Discussion of nonuniqueness of parameter sets

  3. Test Case Voltages

  4. Test Case Frequencies

  5. Event 1, Given Parameters

  6. Event 2, Given Parameters

  7. Event 3, Given Parameters

  8. Event 4, Given Parameters

  9. Event 5, Given Parameters

  10. Event 6, Given Parameters

  11. Event 7, Given Parameters

  12. Analysis • What are the features of these responses? • Primarily long-term trends, tens of seconds • Some oscillatory responses. • First attempt using simplest Least Squares Approach • Estimate parameter values • Estimate bounds on values • Use PSLF to generate sensitivity model. Iterate.

  13. Event 1 Original Parameters Modified Parameters

  14. Event 2 Original Parameters Modified Parameters

  15. Event 3 Original Parameters Modified Parameters

  16. Event 4 Original Parameters Modified Parameters

  17. Event 5 Original Parameters Modified Parameters

  18. Event 6 Original Parameters Modified Parameters

  19. Event 7 Original Parameters Modified Parameters

  20. Parameter Changes 0.052 (0.003) 0.0 xcomp 3.62 4.42 (0.18) -0.1 0.0 0.1 H 3.5 4.0 4.5 5.0

  21. Parameter Changes 400 443 (175) Ka 200 300 400 500 0.021 (0.003) 0.035 0.79 (0.12) 1.25 Kf 0.01 0.02 0.03 0.04 0.05 Tf 0.5 1.0 1.5

  22. Parameter Changes 12.6 (0.29) 30 T5 10 15 20 25 30 Ks 8.2 (0.18) 15 0 10 20

  23. Parameter Changes 1.82 (0.35) 0.045 (0.0015) 1.27 1.76 (0.22) 0.05 1.08 Tr Tw rperm 0 2 4 6 8 10 0.04 0.05 0.06 0.07 1.0 1.5 2.0 2.5 0.46 (0.09) 0.5 rtemp 0.1 0.2 0.3 0.4 0.5

  24. NOT UNIQUE Analyses of the sensitivity model and of the parameter covariance matrix suggests that certain parameter adjustments will have negligible affect on the simulations. These include: • The value of Ka almost unilaterally • Patterns of changes in at least four different directions with little change.

  25. Not Unique Fit for values of Ka=443, 400, and 250.

  26. Not Unique H 4.42 4.42 Xc 0.052 0.052 Ka 443 400 Kf 0.021 0.021 Tf 0.79 0.78 T5 12.6 12.6 Ks 8.23 8.23 Rp 0.045 0.045 Rt 0.46 0.50 Tr 1.82 1.65 Tw 1.76 1.76

  27. Not Unique H 4.42 4.38 Xc 0.052 0.052 Ka 443 400 Kf 0.021 0.021 Tf 0.79 0.77 T5 12.6 12.6 Ks 8.23 8.25 Rp 0.045 0.045 Rt 0.46 0.52 Tr 1.82 1.67 Tw 1.76 1.27

  28. Not Unique H 4.42 3.62 Xc 0.052 0.052 Ka 443 400 Kf 0.021 0.020 Tf 0.79 0.71 T5 12.6 12.6 Ks 8.23 8.27 Rp 0.045 0.045 Rt 0.46 0.50 Tr 1.82 1.74 Tw 1.76 1.27

  29. Sensitivity Model Singular Values Corresponding singular vectors indicate specific parameter changes that result in similar solutions 25997 Rperm 22203 xcomp, Kf 15942 xcomp, Kf 743 Rtemp, Tr 277 Tf, 246 T5, Ks 173 H 138 Tw 98 T5, Ks 86 Rtemp, Tr 0 .2 Ka Tr Rtemp

  30. NOT UNIQUE H 4.42 4.47 Xc 0.052 0.052 Ka 443 400 Kf 0.021 0.021 Tf 0.79 0.72 T5 12.6 12.6 Ks 8.23 8.26 Rp 0.045 0.045 Rt 0.46 0.40 Tr 1.82 2.02 Tw 1.76 2.00

  31. Test Case Voltages

  32. Training Signal 1 H 4.42 4.47 Xc 0.052 0.046 Ka 443 500 Kf 0.021 0.027 Tf 0.79 0.89 T5 12.6 12.2 Ks 8.23 8.58 Rp 0.045 0.045 Rt 0.46 0.32 Tr 1.82 2.61 Tw 1.76 2.04

  33. Test Case Voltages

  34. Training Signals 1 4 6 H 4.42 4.46 Xc 0.052 0.48 Ka 443 500 Kf 0.021 0.026 Tf 0.79 0.88 T5 12.6 12.3 Ks 8.23 8.42 Rp 0.045 0.045 Rt 0.46 0.32 Tr 1.82 2.60 Tw 1.76 2.08

  35. Conclusion • Finding a decent set of parameters to match data is not difficult in this case. • There are too many parameters to tweak. Confidence that the parameters are “right” is low. • Confidence that the parameters will work accurately in simulations is moderate to high.

More Related