1 / 37

Few-body quantum dynamics in strong fields:

Max-Planck-Institut für Kernphysik. Few-body quantum dynamics in strong fields: From "simple" single ionisation to exploding molecular clocks. Bernold Feuerstein , Artem Rudenko, Karl Zrost, Vitor L. B. de Jesus, Claus Dieter Schröter, Robert Moshammer and Joachim Ullrich.

amandla
Download Presentation

Few-body quantum dynamics in strong fields:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Max-Planck-Institut für Kernphysik Few-body quantum dynamics in strong fields: From "simple" single ionisation to exploding molecular clocks Bernold Feuerstein, Artem Rudenko, Karl Zrost, Vitor L. B. de Jesus, Claus Dieter Schröter, Robert Moshammer and Joachim Ullrich Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg

  2. Outline • Experimental set-up • Single ionisation of atoms • Multiple ionisation of atoms • Molecular fragmentation

  3. MCP Ions Z(ToF)  Y(jet direction) X(laser beam propagation) B E, Laser Helmholtz coils Spherical mirror Supersonic gas jet Spectrometer: • Background pressure 2x10-11 mbar • Target density 108-109 cm-1 • Extraction voltage 1 V/cm; • Ion-electron coincidence MCP electrons Laser (Ti: Sapphire): Photon energy 1.55 eV (l = 800 nm), pulse length 23 fs, Intensity I  1014-1016 W/cm2, repetition rate 3 kHz Experiment: „Reaction Microscope“ Momentum resolution: ΔP|| < 0.02 a.u. Ultrashort pulses: 6-7 fs

  4. Reaction Microscope

  5. Single ionisation of atoms

  6. Ek Ip - ionisation potential Up = I/42 - ponderomotive potential Ek Ionisation rate: Ek= N ħ  - Ip* Electron energy: ħ Due to AC Stark shiftIp*  Ip + Up Ip* Resonant Nonresonant Single ionisation of atoms Keldysh parameter  > 1: Multiphoton (Above Threshhold) Ionisation

  7. Ip - ionisation potential Up = I/42 - ponderomotive potential 5000 4000 3000 Minimum at ultra–low energies: counts 2000 Ne,1015 W/cm2 8000  = 0.42 6000 1000 counts 4000 1) Tunneling through the lowered barrier 0 2) Classical oscillating motion in the laser field -1,0 -0,5 0,0 0,5 1,0 Coulomb interaction with the parent ion? 2000 P, a.u. 0 K. Dimitriou et al, TU Vienna -3 -2 -1 0 1 2 3 Pion||, [a.u] Single ionisation of atoms Keldysh parameter  < 1: Tunnel ionisation Transverse momentum distribution 2-step process:

  8. 20000 2.1 PW/cm2 15000 1.0 PW/cm2 counts 1.5 PW/cm2 10000 5000 0.6 PW/cm2 0 -3 -2 -1 0 1 2 3 P||, [a.u] Ion momentum distribution:He, 23fs : 0.31 – 0.58

  9. : 0.3 – 0.67 7000 2.0 PW/cm2 1.5 PW/cm2 5000 counts 1.0 PW/cm2 0.6 PW/cm2 3000 0.4 PW/cm2 1000 -3 -2 -1 0 1 2 3 P||, [a.u] Ion momentum distribution:Ne, 23fs

  10. : 0.29 – 1.1 8000 1.5 PW/cm2 6000 0.8 PW/cm2 counts 0.5 PW/cm2 4000 0.25 PW/cm2 2000 0.12 PW/cm2 0 -2 -1 0 1 2 P||, [a.u] Ion momentum distribution:Ar, 23fs

  11. 1.5 PW/cm2 6000 4000 1.0 PW/cm2 0.6 PW/cm2 2000 0.4 PW/cm2 0 0 2 4 6 8 10 12 14 16 18 20 Electron energy [eV] Electron energy spectra:Ne, 23 fs counts No ponderomotive shifts observed!

  12. Z(ToF) 0.6 0.6 0.6  = 0.58 He 0.6 PW/cm2   Y(jet direction) 0.4 0.4 0.4 0.2 0.2 0.2 X(laser beam propagation) 0 0 0 P|| = Pz - momentum along laser polarisation Ne 0.4 PW/cm2  = 0.67 P [a.u.] P = (Px2 + Py2)1/2 Ar 0.25 PW/cm2  = 0.73 Area where the spectrometer has no resolution in the transverse direction -1.0 -0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 P [a.u.] Two-dimensional electron momentum distributions

  13. Z(ToF) 0.6 0.6 0.6   Y(jet direction) 0.4 0.4 0.4 0.2 0.2 0.2 X(laser beam propagation) 0 0 0 P|| = Pz - momentum along laser polarisation P = (Px2 + Py2)1/2 Area where the spectrometer has no resolution in the transverse direction Two-dimensional electron momentum distributions 0.25 PW/cm2  = 0.45 He 1.0 PW/cm2 Ne 1.0 PW/cm2  = 0.42 P [a.u.] Ar 1.0 PW/cm2  = 0.36 -1.0 -0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 P [a.u.]

  14. 0.6 0.6 0.6 23 fs Ne 1.0 PW/cm2  0.4 0.4 0.4 0.2 0.2 0.2 0 0 0 23 fs Ne 0.4 PW/cm2 P [a.u.] 6-7 fs Ne 0.4 PW/cm2 -1.0 -0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0 P [a.u.] Two-dimensional electron momentum distributions Ultrashort pulses No resonance-like structures resolved!

  15. Single ionisation: Conclusions • Smooth transition from multiphoton to tunneling ionisation • Target dependence near zero momenta: • Minimum for He and Ne, maximum for Ar • No ponderomotive shifts observed – resonance-like structures: • Contribution of resonant processes can explain the absence • of ponderomotive shifts • Rich structures in two-dimensional electron momentum spectra • Multiphoton features of the process are washed out • for a few-cycle pulse

  16. Double and multiple ionisation of atoms

  17. wt Double and multiple ionisation of atoms Features of strong-field ionisation 1014 – 1015 W/cm2 E(t) = E0sin(wt) • Field (tunnel) ionisation • Recollision • Drift momentum related to phase pd = (qE0/w)cos(wt) = 2q (Up)1/2 cos(wt)

  18. pion|| 2q(Up)1/2 pion|| 0 pion|| Mechanisms for strong-field double ionisation sequential nonsequential recollision (e,2e) recollision-excitation subsequent tunnelling

  19. 4(Up)1/2 He, Ne, Ar: strong-field double ionisation sequential V. B. L. de Jesus et al. JPB 37 (2004) L161

  20. Ionization: Lotz-type formula Excitation: Van Regemorter formula Influence of the atomic structure – a simple model Cross sections for: Initial phase average: V. B. L. de Jesus et al. JPB 37 (2004) L161

  21. Ne4+ Ne3+ 23 fs Ne2+ 4(Up)1/2 6(Up)1/2 8(Up)1/2 1.5 PW/cm2 P / a.u. 2.0 PW/cm2 P / a.u. P / a.u. P / a.u. Multiple ionisation Sequential

  22. 23 fs Ar3+ Ar4+ 0.3 PW/cm2 6(Up)1/2 1.2 PW/cm2 1.2 PW/cm2 8(Up)1/2 0.5 PW/cm2 1.5 PW/cm2 1.5 PW/cm2 0.8 PW/cm2 2.0 PW/cm2 2.0 PW/cm2 P / a.u. P / a.u. P / a.u. Sequential

  23. Y2+ / Y+ Y3+ / Y2+ Y3+ / Y+ Y4+ / Y2+ Y4+ / Y+ Multiple ionisation of Ar: ion yield ratio Y4+ / Y3+

  24. nonsequential Drift momentum 2n(Up)1/2 Ne  Ne+ Nen+ Field ionisation Recollision (e,ne) sequential / nonsequential Ar  Arm+ Arn+ Field ionisation Recollision (e,(nm+1)e) Mechanisms for strong-field multiple ionisation (2n 2.52(m 1))(Up)1/2 Feuerstein et al. JPB 33 (2000) L823

  25. Ar  Ar2+ Ar4+ Ar  Ar2+ Ar3+ Ar  Ar3+ Ar4+ 0.3 PW/cm2 6(Up)1/2 1.2 PW/cm2 1.2 PW/cm2 8(Up)1/2 0.5 PW/cm2 1.5 PW/cm2 1.5 PW/cm2 0.8 PW/cm2 2.0 PW/cm2 2.0 PW/cm2 Role of excited states? Sequential Ar  Arm+ Arm+* Arn+ Field ionisation Field ionisation Recollision excitation P / a.u. P / a.u. P / a.u.  life time (pulse duration)

  26. Ar2+ 0.5 PW/cm2 23 fs 6-7 fs P / a.u. Ar3+ 1.2 PW/cm2 Ar4+ 1.2 PW/cm2 P / a.u. P / a.u. Lifetime of excited states? - Pulse duration dependence

  27. Y2+ / Y+ Y3+ / Y2+ Y3+ / Y+ Y4+ / Y2+ Y4+ / Y+ Multiple ionisation of Ar: ion yield ratio 23 fs 6-7 fs Y4+ / Y3+

  28. Double and multiple ionisation: Conclusions • First systematic study of ion momentum distributions for strong-field • double and multiple ionisation of noble gases (He, Ne, Ar) • Core excitationduring recollision dominates nonsequential double • ionisation for He and Ar • Recollision (e,ne) is the dominating mechanism for creation of • Ne2+, Ne3+ and Ne4+ ions (double-hump structure) • Multiple ionisation mechanism for argon is more complex • – most likely combined sequential and nonsequential processes • – enhanced double-hump structure for ultrashort pulses • indicates importance of core excitations

  29. Molecular fragmentation Confusion reigns when Sir James Dwighton is murdered... Luckily, his broken clock tells the tale--or does it? What do broken (Coulomb-exploded) molecular clocks tell us? Does confusion reign also here?

  30. Hydrogen molecular potential curves in a strong laser field Fragmentation channels Single ionisation (SI): H2 H2+ + e- 2ppu H+ + H+ Dissociation: H2+ H+ + H0 H+ + H(2p) • 1- and 2-photon net absorption • recollision - excitation 2psu H+ + H(1s) Double ionisation (Coulomb explosion, CE) H2+ H+ + H+ + e- 1w Dressed states 2w 1ssg 3w H2+ • Sequential (field) double ionisation (SDI): • enhanced @ R = 5 – 10 a.u. (CREI) H(1s) + H(1s) • Recollision • - e,2e H2 - excitation with subsequent field ionisation

  31. H2+ (D2+) as a molecular clock Principle of a molecular clock: based on the propagation of electronic (recollision) and nuclear wavepacktes H. Niikura et al. Nature 417 (2002) 917, 421 (2003) 826 But: works only if the fragmentation path can be identified Recent progress: A.S. Alnaser et al. PRL 91 (2003) 163002 Experiment: coincident detection of emitted protons Theory: comprehensive model including recollision-excitation and ionisation X.M. Tong, Z.X. Zhao and C.D. Lin PRL 91 (2003) 233203 PRA 68 (2003) 043412  recollision-excitation is the dominating mechanism for both dissociation and double ionisation channels producing high-energy fragments

  32. CE CE 25 fs 0.2 PW/cm2 0.3 PW/cm2 0.5 PW/cm2 10 fs 0.5 PW/cm2 counts 6 fs 0.2 PW/cm2 0.5 PW/cm2 0.8 W/cm2 Time-of–flight [ns] From short to ultrashort pulses: non-coincident spectra Dissociation H2+ 2 w 1 w

  33. Recollision CREI counts (log scale) -20 0 20 40 40 20 0 -20 -40 P2 || [a.u.] P1 || [a.u.] From short to ultrashort pulses: coincident spectra 23 fs Due to momentum conservation true coincidence events lie near the P1 ||= - P2 ||diagonal!

  34. Recollision regions, where false coincidences can not be excluded 6 fs -20 0 20 40 40 20 0 -20 -40 Sequential ionisation? P2 || [a.u.] counts (log scale) P1 || [a.u.]

  35. Molecular fragmentation: Conclusions • Dynamics of the H2 fragmentation depends drastically • on the pulse duration • Charge-resonant enhanced ionisation (CREI) is suppressed for 6 fs • Coincidence measurements provide a method to distinguish • dissociation and double ionisation contributions within the • same energy range

  36. Open questions and outlook • Single ionisation: • More detailed measurements with well-controlled few-cycle pulses • Other targets, broader range of , molecules, atomic hydrogen • Ultrashort pulses: absolute phase effects • Multiple ionisation: • Towards higher and lower intensities (transition to sequential regime / • threshold effects fpr recollision • More on correlated electron dynamics • Ultrashort pulses: absolute phase effects • Molecular fragmentation: • Origin of low-energy Coulomb explosion peaks • – dependence on temporal pulse shape • Branching ratios for different fragmentation channels • Electron dynamics – breakdown of Born-Oppenheimer approximation?

  37. Max-Planck-Institut für Kernphysik Acknowledgment Claus Dieter Schröter Robert Moshammer (Head of the group) Artem Rudenko Karl Zrost Vitor Luiz Bastos de Jesus

More Related